Home
Class 12
MATHS
If omega is a complex cube root of unity...

If `omega` is a complex cube root of unity then the matrix `A = [(1, omega^(2),omega),(omega^(2),omega,1),(omega,1,omega^(2))]` is a

A

singular matrix

B

non -singular matrix

C

skew symmetric matrix

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To determine the properties of the matrix \( A \) given by \[ A = \begin{pmatrix} 1 & \omega^2 & \omega \\ \omega^2 & \omega & 1 \\ \omega & 1 & \omega^2 \end{pmatrix} \] where \( \omega \) is a complex cube root of unity, we will first calculate the determinant of the matrix \( A \). ### Step 1: Recall the properties of \( \omega \) The complex cube roots of unity are given by: \[ \omega = e^{2\pi i / 3} \quad \text{and} \quad \omega^2 = e^{-2\pi i / 3} \] These roots satisfy the equation: \[ 1 + \omega + \omega^2 = 0 \] Also, we have: \[ \omega^3 = 1 \quad \text{and} \quad \omega^2 = \frac{1}{\omega} \] ### Step 2: Calculate the determinant of \( A \) To find the determinant of \( A \), we can use the formula for the determinant of a \( 3 \times 3 \) matrix: \[ \text{det}(A) = a(ei - fh) - b(di - fg) + c(dh - eg) \] where the matrix is represented as: \[ \begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix} \] For our matrix \( A \): - \( a = 1, b = \omega^2, c = \omega \) - \( d = \omega^2, e = \omega, f = 1 \) - \( g = \omega, h = 1, i = \omega^2 \) Substituting these values into the determinant formula: \[ \text{det}(A) = 1(\omega \cdot \omega^2 - 1 \cdot 1) - \omega^2(\omega^2 \cdot \omega^2 - 1 \cdot \omega) + \omega(\omega^2 \cdot 1 - \omega \cdot \omega) \] Calculating each term: 1. \( \omega \cdot \omega^2 = \omega^3 = 1 \) 2. \( 1 \cdot 1 = 1 \) 3. \( \omega^2 \cdot \omega^2 = \omega^4 = \omega \) 4. \( 1 \cdot \omega = \omega \) 5. \( \omega^2 \cdot 1 = \omega^2 \) 6. \( \omega \cdot \omega = \omega^2 \) Substituting these results: \[ \text{det}(A) = 1(1 - 1) - \omega^2(\omega - \omega) + \omega(\omega^2 - \omega^2) \] \[ = 1(0) - \omega^2(0) + \omega(0) = 0 \] ### Conclusion Since the determinant of the matrix \( A \) is \( 0 \), the matrix \( A \) is singular.
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If omega is a complex cube root of unity.Show that Det[[1,omega,omega^(2)omega,omega^(2),1omega^(2),1,omega]]=0

If omega is a complex cube root of unity, then (1-omega+omega^(2))^(6)+(1-omega^(2)+omega)^(6)=

omega is a complex cube root of unity,then (1-omega)(1-+-ega^(2))(1-omega^(4))(1-omega^(8))

If omega is a complex cube root of unity, then a root of the equation |(x +1,omega,omega^(2)),(omega,x + omega^(2),1),(omega^(2),1,x + omega)| = 0 , is

If omega be a complex cube root of unity then the value of (1)/(1+2 omega)-(1)/(1+omega)+(1)/(2+omega) is

If omega is a cube root of unity , then |(x+1 , omega , omega^2),(omega , x+omega^2, 1),(omega^2 , 1, x+omega)| =

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 1 ( Single Correct Answer Type Questions ) )
  1. If A, B, and C are three square matrices of the same order, then AB=AC...

    Text Solution

    |

  2. If the product of the matrix B=[(2,6,4),(1,0,1),(-1,1,-1)] with a m...

    Text Solution

    |

  3. If omega is a complex cube root of unity then the matrix A = [(1, omeg...

    Text Solution

    |

  4. [{:(,0,1,2),(,1,2,3),(,3,a,1):}],=A^(-1)=[{:(,1//2,-1//2,1//2),(,-4,3,...

    Text Solution

    |

  5. Let A=[[a,b],[c,d]] be a 2xx2 real matrix. If A-alphaI is invertible f...

    Text Solution

    |

  6. If A =[(1,2),(3,4)] then A^(2)-5A equals

    Text Solution

    |

  7. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  8. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  9. Let A=[1-1 1 2 1-3 1 1 1]a n d10 B=[-4 2 2-5 0alpha1 2 3]dot If B is...

    Text Solution

    |

  10. If A=[(a,b),(b,a0] and A^2=[(alpha, beta0,(beta, alpha)] then (A) alph...

    Text Solution

    |

  11. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  12. If a matrix A is both symmetric and skew-symmetric, then A is a dia...

    Text Solution

    |

  13. Let A = [(2,-1),(3,4)], B = [(5,2),(7,4)] , C = [(2,5),(3,8)] . Let ...

    Text Solution

    |

  14. If A^2 = A, then (I + A)^(4) is equal to

    Text Solution

    |

  15. The matrix A = [(0,0,-7),(0,-7,0),(-7,0,0)] is a

    Text Solution

    |

  16. If A=[3 5],B=[7 3], then find a non-zero matrix C such that AC=BC.

    Text Solution

    |

  17. Find the values of x, y, z if the matrix A=[0 2y z x y-z x-y z] sat...

    Text Solution

    |

  18. Suppose A is square matrix such that A^(3) =I then (A+I)^(3) +(A-I)^...

    Text Solution

    |

  19. The number of 3xx3 matrices A whose entries are either 0 or 1 and for ...

    Text Solution

    |

  20. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |