Home
Class 12
MATHS
If A =[(1,2),(3,4)] then A^(2)-5A equal...

If A `=[(1,2),(3,4)]` then `A^(2)-5A` equals

A

O

B

I

C

2I

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to compute \( A^2 - 5A \) for the matrix \( A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \). ### Step 1: Calculate \( A^2 \) To find \( A^2 \), we multiply matrix \( A \) by itself: \[ A^2 = A \times A = \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ 1 \times 1 + 2 \times 3 = 1 + 6 = 7 \] - First row, second column: \[ 1 \times 2 + 2 \times 4 = 2 + 8 = 10 \] - Second row, first column: \[ 3 \times 1 + 4 \times 3 = 3 + 12 = 15 \] - Second row, second column: \[ 3 \times 2 + 4 \times 4 = 6 + 16 = 22 \] Thus, we have: \[ A^2 = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} \] ### Step 2: Calculate \( 5A \) Next, we calculate \( 5A \) by multiplying each element of matrix \( A \) by 5: \[ 5A = 5 \times \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 5 \times 1 & 5 \times 2 \\ 5 \times 3 & 5 \times 4 \end{pmatrix} = \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix} \] ### Step 3: Compute \( A^2 - 5A \) Now we subtract \( 5A \) from \( A^2 \): \[ A^2 - 5A = \begin{pmatrix} 7 & 10 \\ 15 & 22 \end{pmatrix} - \begin{pmatrix} 5 & 10 \\ 15 & 20 \end{pmatrix} \] Calculating the elements of the resulting matrix: - First row, first column: \[ 7 - 5 = 2 \] - First row, second column: \[ 10 - 10 = 0 \] - Second row, first column: \[ 15 - 15 = 0 \] - Second row, second column: \[ 22 - 20 = 2 \] Thus, we have: \[ A^2 - 5A = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix} \] ### Step 4: Factor out the common term We can factor out 2 from the resulting matrix: \[ A^2 - 5A = 2 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \] The matrix inside the parentheses is the identity matrix \( I \): \[ A^2 - 5A = 2I \] ### Final Answer Therefore, the final answer is: \[ A^2 - 5A = 2I \] ---
Promotional Banner

Topper's Solved these Questions

  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 ( Straight Objective Type Questions ) )|11 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES ( LEVEL 2 (Numercial Answer Type Questions))|18 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • MATHEMATICAL REASONING

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B. ARCHITECTURE ENTRANCE EXAMINATION PAPERS|11 Videos
  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTRE ENTRANCE EXAMINATION PAPERS|9 Videos

Similar Questions

Explore conceptually related problems

If A=[(1,2),(3,4)] then A^(-1) is equal to

If A=[(1,-2),(-3,4)] , then find A^(2)+5A .

If A=[(5,4),(3,2)] then A^(-1) is equal to

If f(x)=x^(2)+4x-5andA={:[(1,2),(4,-3)]:} , then f(A) is equal to

If P=[(2, -2, -4),(-1, 3, 4),(1, -2, -3)], then P^(5) equals

If [ (1, 2),(-2,-b)]+ [(a,4),(3,2)]=[(5,6),(1,0)] , then a^(2) + b^(2) is equal to

If P = [{: (2 , -2, -4),(-1, 3, 4),(1 , -2, -3):}] , then P^(5) equals

MCGROW HILL PUBLICATION-MATRICES-SOLVED EXAMPLES ( LEVEL 1 ( Single Correct Answer Type Questions ) )
  1. [{:(,0,1,2),(,1,2,3),(,3,a,1):}],=A^(-1)=[{:(,1//2,-1//2,1//2),(,-4,3,...

    Text Solution

    |

  2. Let A=[[a,b],[c,d]] be a 2xx2 real matrix. If A-alphaI is invertible f...

    Text Solution

    |

  3. If A =[(1,2),(3,4)] then A^(2)-5A equals

    Text Solution

    |

  4. Solve system of linear equations, using matrix method, x y" "+" "2...

    Text Solution

    |

  5. If A^2-A +I = 0, then the inverse of A is: (A) A+I (B) A (C) ...

    Text Solution

    |

  6. Let A=[1-1 1 2 1-3 1 1 1]a n d10 B=[-4 2 2-5 0alpha1 2 3]dot If B is...

    Text Solution

    |

  7. If A=[(a,b),(b,a0] and A^2=[(alpha, beta0,(beta, alpha)] then (A) alph...

    Text Solution

    |

  8. Let omega!=1 be cube root of unity and S be the set of all non-singula...

    Text Solution

    |

  9. If a matrix A is both symmetric and skew-symmetric, then A is a dia...

    Text Solution

    |

  10. Let A = [(2,-1),(3,4)], B = [(5,2),(7,4)] , C = [(2,5),(3,8)] . Let ...

    Text Solution

    |

  11. If A^2 = A, then (I + A)^(4) is equal to

    Text Solution

    |

  12. The matrix A = [(0,0,-7),(0,-7,0),(-7,0,0)] is a

    Text Solution

    |

  13. If A=[3 5],B=[7 3], then find a non-zero matrix C such that AC=BC.

    Text Solution

    |

  14. Find the values of x, y, z if the matrix A=[0 2y z x y-z x-y z] sat...

    Text Solution

    |

  15. Suppose A is square matrix such that A^(3) =I then (A+I)^(3) +(A-I)^...

    Text Solution

    |

  16. The number of 3xx3 matrices A whose entries are either 0 or 1 and for ...

    Text Solution

    |

  17. The number of 3 3 non-singular matrices, with four entries as 1 and ...

    Text Solution

    |

  18. Consider the system of linear equations: x(1) + 2x(2) + x(3) = 3 2...

    Text Solution

    |

  19. Let a,b, and c be three real numbers satistying [a,b,c][(1,9,7),(8,2,7...

    Text Solution

    |

  20. Let P and Q be 3xx3 matrices with P!=Q . If P^3=""Q^3a n d""P^2Q""=""Q...

    Text Solution

    |