Home
Class 12
MATHS
Let f(x) = {x}, the fractional part of x...

Let `f(x) = {x}`, the fractional part of `x` then `int_(-1)^(1) f(x) dx` is equal to

A

`1`

B

`2`

C

`0`

D

`1//2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{-1}^{1} f(x) \, dx \) where \( f(x) = \{x\} \) (the fractional part of \( x \)), we will break the integral into two parts: from \(-1\) to \(0\) and from \(0\) to \(1\). ### Step-by-Step Solution: 1. **Define the Function**: The fractional part function \( f(x) = \{x\} \) is defined as: \[ f(x) = x - \lfloor x \rfloor \] For \( x \in [-1, 0) \), \( \lfloor x \rfloor = -1 \), hence: \[ f(x) = x - (-1) = x + 1 \] For \( x \in [0, 1) \), \( \lfloor x \rfloor = 0 \), hence: \[ f(x) = x - 0 = x \] 2. **Split the Integral**: We can write the integral as: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx \] 3. **Evaluate the Integral from \(-1\) to \(0\)**: For \( x \in [-1, 0) \): \[ \int_{-1}^{0} f(x) \, dx = \int_{-1}^{0} (x + 1) \, dx \] Now, calculate this integral: \[ \int (x + 1) \, dx = \frac{x^2}{2} + x \] Evaluating from \(-1\) to \(0\): \[ \left[ \frac{0^2}{2} + 0 \right] - \left[ \frac{(-1)^2}{2} + (-1) \right] = 0 - \left[ \frac{1}{2} - 1 \right] = 0 - \left( \frac{1}{2} - 1 \right) = 0 + \frac{1}{2} = \frac{1}{2} \] 4. **Evaluate the Integral from \(0\) to \(1\)**: For \( x \in [0, 1) \): \[ \int_{0}^{1} f(x) \, dx = \int_{0}^{1} x \, dx \] Now, calculate this integral: \[ \int x \, dx = \frac{x^2}{2} \] Evaluating from \(0\) to \(1\): \[ \left[ \frac{1^2}{2} \right] - \left[ \frac{0^2}{2} \right] = \frac{1}{2} - 0 = \frac{1}{2} \] 5. **Combine the Results**: Now, we combine the results of both integrals: \[ \int_{-1}^{1} f(x) \, dx = \int_{-1}^{0} f(x) \, dx + \int_{0}^{1} f(x) \, dx = \frac{1}{2} + \frac{1}{2} = 1 \] ### Final Answer: \[ \int_{-1}^{1} f(x) \, dx = 1 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If {x} denotes the fractional part of x, then int_(0)^(x)({x}-(1)/(2)) dx is equal to

f(x)=Minimum({x+1],{x-1}AA x in R, where {.} denotes the fractional part,then int_(-5)^(4)f(x)dx is equal to

If f(x)=min({x},{-x})x in R, where {x} denotes the fractional part of x, then int_(-100)^(100)f(x)dx is

if f(x)=|x-1| then int_(0)^(2)f(x)dx is

Let f(x)=int_(3)^(25n+(1)/(4))e^({2x+3})dx, where {x} is fractional part of x, then f(x) is equal to

Let f be an odd function then int_(-1)^(1) (|x| +f(x) cos x) dx is equal to

If 2f(x) - 3 f(1//x) = x," then " int_(1)^(2) f(x) dx is equal to

If f(x)=min_(1){|x-1|,|x|,|x+1|, then the value of int_(-1)^(1)f(x)dx is equal to

Let f(x)=x-[x], for every real number x, where [x] is integral part of x .Then int_(-1)^(1)f(x)dx is

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 1) Single Correct Answer Type Questions
  1. The absolute value of underset(10)overset(19)int (cosx)/(1+x^(8))dx, ...

    Text Solution

    |

  2. The value of the integral overset(3)underset(0)int (dx)/(sqrt(x+1)+sqr...

    Text Solution

    |

  3. Let f(x) = {x}, the fractional part of x then int(-1)^(1) f(x) dx is e...

    Text Solution

    |

  4. The value of int(-pi//2)^(pi//2) cos t sin (2t- pi//4) dt is

    Text Solution

    |

  5. int(0)^(oo)(x logx)/((1+x^(2))^(2)) dx=

    Text Solution

    |

  6. overset(1)underset(0)int |sin 2pi x|dx id equal to

    Text Solution

    |

  7. The value of lim(x->oo)(int0^x(tan^(-1)x)^2)/(sqrt(x^2+1))dx

    Text Solution

    |

  8. If A (t) = int(-1)^(t) e^(-|x|) dx, then lim( t to oo) A (t) is equal ...

    Text Solution

    |

  9. If the value of int(-2)^(2) | x cos pi x| dx = k//pi then the value of...

    Text Solution

    |

  10. The value of the integral underset(0)overset(pi)int (xdx)/(1+cos alpha...

    Text Solution

    |

  11. The value of lim( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) +...

    Text Solution

    |

  12. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  13. For any n in N, the value of the intergral underset(0)overset(pi)int (...

    Text Solution

    |

  14. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  15. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  16. Let I(1) = int(a)^(b) (int(a)^(x) f(t) dt) dx and I(2) =int(a)^(b) (b-...

    Text Solution

    |

  17. The least value of the function F(x) = int(x)^(2) log(1//3) t dt, x in...

    Text Solution

    |

  18. The greatest value of the function F(x)= int(4)^(x) (t^(2) -8t+16) dt ...

    Text Solution

    |

  19. If for a continuous function f, int(-a)^(a) f(x)dx = K int(0)^(a) (f(x...

    Text Solution

    |

  20. If I(n)=int(1)^(e)(log x)^(n)dx then I(8)+8I(7)=

    Text Solution

    |