Home
Class 12
MATHS
The least value of the function F(x) = i...

The least value of the function `F(x) = int_(x)^(2) log_(1//3) t dt, x in [1//10,4]` is at `x=`

A

`1//10`

B

`4`

C

`1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the least value of the function \( F(x) = \int_{x}^{2} \log_{1/3} t \, dt \) for \( x \in \left[\frac{1}{10}, 4\right] \), we will follow these steps: ### Step 1: Differentiate \( F(x) \) Using the Leibniz rule for differentiation under the integral sign, we differentiate \( F(x) \): \[ F'(x) = -\log_{1/3} x \] ### Step 2: Set the derivative to zero To find the critical points, we set the derivative equal to zero: \[ -\log_{1/3} x = 0 \] This implies: \[ \log_{1/3} x = 0 \] ### Step 3: Solve for \( x \) The equation \( \log_{1/3} x = 0 \) means: \[ x = 3^0 = 1 \] ### Step 4: Check the critical point within the interval We need to check if \( x = 1 \) lies within the interval \( \left[\frac{1}{10}, 4\right] \). Since \( 1 \) is indeed within this interval, we will evaluate \( F(x) \) at the endpoints and at the critical point. ### Step 5: Evaluate \( F(x) \) at the endpoints and the critical point 1. **At \( x = \frac{1}{10} \)**: \[ F\left(\frac{1}{10}\right) = \int_{\frac{1}{10}}^{2} \log_{1/3} t \, dt \] 2. **At \( x = 1 \)**: \[ F(1) = \int_{1}^{2} \log_{1/3} t \, dt \] 3. **At \( x = 4 \)**: \[ F(4) = \int_{4}^{2} \log_{1/3} t \, dt = -\int_{2}^{4} \log_{1/3} t \, dt \] ### Step 6: Compare the values We will need to calculate these integrals to find the least value. However, we can analyze the behavior of \( F(x) \) based on the sign of \( F'(x) \): - For \( x < 1 \), \( F'(x) > 0 \) (function is increasing). - For \( x > 1 \), \( F'(x) < 0 \) (function is decreasing). Thus, \( F(x) \) attains its minimum at \( x = 1 \). ### Conclusion The least value of the function \( F(x) \) occurs at: \[ \boxed{1} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Single Correct Answer Type Questions|38 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept-based) Single Correct Answer Type Questions|10 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

The difference between the greatest and least values of the function F(x) = int_(0)^(x) (t+1) dt on [1,3] is

The least value of phi(x)=int_(x)^(2)log_((1)/(3))tdt for x in((1)/(10),4) is at x=

The difference between the greatest and the least values of the function f(x)=int_(0)^(x)(at^(2)+1+cos t)dt,a>0 for x in[2,3] is

The difference between the greateset ahnd least vlaue of the function f(x)=int_(0)^(x) (6t^2-24)" dt on " [1,3] " dt on " [1,3] is

The range of the function f(x)=int_(1)^(x)|t|dt , x in[(-1)/(2),(1)/(2)] is

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 1) Single Correct Answer Type Questions
  1. If A (t) = int(-1)^(t) e^(-|x|) dx, then lim( t to oo) A (t) is equal ...

    Text Solution

    |

  2. If the value of int(-2)^(2) | x cos pi x| dx = k//pi then the value of...

    Text Solution

    |

  3. The value of the integral underset(0)overset(pi)int (xdx)/(1+cos alpha...

    Text Solution

    |

  4. The value of lim( n to oo) ((1)/(n) + (n)/((n+1)^2) + (n)/( (n+2)^2) +...

    Text Solution

    |

  5. The value of lim(n to oo)((1)/(1^(3)+n^(3))+(2^(2))/(2^(3)+n^(3))+.......

    Text Solution

    |

  6. For any n in N, the value of the intergral underset(0)overset(pi)int (...

    Text Solution

    |

  7. If f(x)=Asin((pix)/2)+B, f'(1/2)=sqrt2 and int0^1 f(x)dx=(2A)/pi then ...

    Text Solution

    |

  8. If (d)/(dx)f(x)=g(x) for a le x le b then, overset(b)underset(a)int f...

    Text Solution

    |

  9. Let I(1) = int(a)^(b) (int(a)^(x) f(t) dt) dx and I(2) =int(a)^(b) (b-...

    Text Solution

    |

  10. The least value of the function F(x) = int(x)^(2) log(1//3) t dt, x in...

    Text Solution

    |

  11. The greatest value of the function F(x)= int(4)^(x) (t^(2) -8t+16) dt ...

    Text Solution

    |

  12. If for a continuous function f, int(-a)^(a) f(x)dx = K int(0)^(a) (f(x...

    Text Solution

    |

  13. If I(n)=int(1)^(e)(log x)^(n)dx then I(8)+8I(7)=

    Text Solution

    |

  14. Let f(1) (x)= int(0)^(x) f(t) dt, f(2) (x) = int(0)^(x) f(1) (t) dt an...

    Text Solution

    |

  15. If variables x and y are related by the equation x=underset(0)overse...

    Text Solution

    |

  16. If y= f(x) be an invertible function with inverse g and h(x) = x f(x)...

    Text Solution

    |

  17. The value of int(0)^([x]) (2^t)/( 2^([t]) ) dt

    Text Solution

    |

  18. If a(n) = int(0)^(pi//2) (sin^(2) nx)/( sin x) dx then a(2) - a(1) , a...

    Text Solution

    |

  19. int(0)^(21) [x]^(4) dx is equal

    Text Solution

    |

  20. If f(x) is a function satisfying f(1/x)+x^(2)f(x)=0 for all non zero x...

    Text Solution

    |