Home
Class 12
MATHS
The value of int(- sqrt(3) )^( sqrt(3)) ...

The value of `int_(- sqrt(3) )^( sqrt(3)) ((d)/(dx ) ( tan^(-1) (1/ x)) + x^(3) ) dx` is

A

`pi//2`

B

`pi//4`

C

`1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int_{-\sqrt{3}}^{\sqrt{3}} \left( \frac{d}{dx} \tan^{-1} \left( \frac{1}{x} \right) + x^3 \right) dx, \] we can break it down into two parts: 1. \(\int_{-\sqrt{3}}^{\sqrt{3}} \frac{d}{dx} \tan^{-1} \left( \frac{1}{x} \right) dx\) 2. \(\int_{-\sqrt{3}}^{\sqrt{3}} x^3 dx\) ### Step 1: Evaluate the first integral Using the Fundamental Theorem of Calculus, we know that: \[ \int \frac{d}{dx} f(x) \, dx = f(x) + C \] Thus, \[ \int_{-\sqrt{3}}^{\sqrt{3}} \frac{d}{dx} \tan^{-1} \left( \frac{1}{x} \right) dx = \tan^{-1} \left( \frac{1}{x} \right) \Big|_{-\sqrt{3}}^{\sqrt{3}}. \] Calculating the limits: \[ \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) - \tan^{-1} \left( \frac{1}{-\sqrt{3}} \right). \] ### Step 2: Calculate \(\tan^{-1} \left( \frac{1}{\sqrt{3}} \right)\) We know that: \[ \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = \frac{\pi}{6} \] and \[ \tan^{-1} \left( \frac{1}{-\sqrt{3}} \right) = -\tan^{-1} \left( \frac{1}{\sqrt{3}} \right) = -\frac{\pi}{6}. \] Thus, \[ \tan^{-1} \left( \frac{1}{\sqrt{3}} \right) - \tan^{-1} \left( \frac{1}{-\sqrt{3}} \right) = \frac{\pi}{6} - \left(-\frac{\pi}{6}\right) = \frac{\pi}{6} + \frac{\pi}{6} = \frac{2\pi}{6} = \frac{\pi}{3}. \] ### Step 3: Evaluate the second integral Now we evaluate the second integral: \[ \int_{-\sqrt{3}}^{\sqrt{3}} x^3 \, dx. \] Since \(x^3\) is an odd function (i.e., \(f(-x) = -f(x)\)), the integral of an odd function over a symmetric interval \([-a, a]\) is zero: \[ \int_{-\sqrt{3}}^{\sqrt{3}} x^3 \, dx = 0. \] ### Step 4: Combine the results Now we combine the results from both integrals: \[ \int_{-\sqrt{3}}^{\sqrt{3}} \left( \frac{d}{dx} \tan^{-1} \left( \frac{1}{x} \right) + x^3 \right) dx = \frac{\pi}{3} + 0 = \frac{\pi}{3}. \] ### Final Answer Thus, the value of the integral is \[ \frac{\pi}{3}. \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

d/(dx) [tan^(-1)(sqrt(x))] =

d/dx(tan^(-1)x) is :

int _( 0) ^(sqrt3) ((1)/(2) (d)/(dx)(tan ^(-1) ""(2x)/(1- x^(2))))dx equals to:

int_(-1)^(1)(d)/(dx)[tan^(-1)((1)/(x))]dx=

The value of int_(-1)^(1) (d)/(dx) ("tan"^(1)(1)/(x))dx is

(d)/(dx)(tan^(-1)((x)/(sqrt(a^(2)-x^(2))))

Find the value of int_(-1)^(1)(d)/(dx)(tan^(-1)(1)/(x))dx

(d)/(dx)tan^(-1)((x)/(1-sqrt(1+x^(2))))]=

(d)/(dx)[(tan sqrt(5x))] =

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 2) Single Correct Answer Type Questions
  1. If m ne n , m n in N then the value of int(0)^(2pi) cos mx cos nx dx i...

    Text Solution

    |

  2. If Q(x) = (1)/(2) a(0) + a(1) cos x + b(1) sin x+ a(2) cos 2x +…+ a(n)...

    Text Solution

    |

  3. The value of int(- sqrt(3) )^( sqrt(3)) ((d)/(dx ) ( tan^(-1) (1/ x)) ...

    Text Solution

    |

  4. The value of int(1//2)^(1) (2 x sin (1)/(x) - cos (1)/(x) ) dx is

    Text Solution

    |

  5. Let f be a continuous function [a, b] such that f(x) gt 0 for all x in...

    Text Solution

    |

  6. Let f be a continuous function on R satisfying f(x+y)= f(x) + f(y) for...

    Text Solution

    |

  7. If f(x) = cosec (x-pi/3) cosec (x-pi/6), then the value of int0^(pi/2)...

    Text Solution

    |

  8. int0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

    Text Solution

    |

  9. If l=int(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] den...

    Text Solution

    |

  10. The numbers A, B and C such that a function of the form f(x) = Ax^(2) ...

    Text Solution

    |

  11. The equation of the tangent to the curve y=int(x)^(x^2) log t dt at x=...

    Text Solution

    |

  12. The value of int(- pi//2)^(pi//2) ((2- sin theta)/( 2+ sin theta)) d t...

    Text Solution

    |

  13. The value of the integral overset(pi//4)underset(0)int (sinx+cosx)/(3+...

    Text Solution

    |

  14. If I1=intx^1 1/(1+t^2)dt and I2=int1^(1/x) 1/(1+t^2)dt for xgt0 then (...

    Text Solution

    |

  15. The solution for x of the equation overset(x)underset(sqrt(2))int(1)...

    Text Solution

    |

  16. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  17. int(0)^(pi) x log sinx dx

    Text Solution

    |

  18. overset(pi)underset(-ip)int [cos px-sin qx]^(2) dx where p,q are integ...

    Text Solution

    |

  19. Let f,g and h be continuous functions on [0,a] such that f(x) = f(a-x)...

    Text Solution

    |

  20. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |