Home
Class 12
MATHS
The value of int(1//2)^(1) (2 x sin (1)/...

The value of `int_(1//2)^(1) (2 x sin (1)/(x) - cos (1)/(x) ) dx` is

A

`sin 1`

B

`cos 1`

C

`2 sin 1`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int_{\frac{1}{2}}^{1} \left( 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx \), we can break it down into two separate integrals: 1. **Split the Integral**: \[ \int_{\frac{1}{2}}^{1} \left( 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx = \int_{\frac{1}{2}}^{1} 2x \sin\left(\frac{1}{x}\right) dx - \int_{\frac{1}{2}}^{1} \cos\left(\frac{1}{x}\right) dx \] 2. **Factor Out Constants**: The first integral can be simplified by factoring out the constant: \[ \int_{\frac{1}{2}}^{1} 2x \sin\left(\frac{1}{x}\right) dx = 2 \int_{\frac{1}{2}}^{1} x \sin\left(\frac{1}{x}\right) dx \] 3. **Substitution for the First Integral**: For the integral \( \int x \sin\left(\frac{1}{x}\right) dx \), we can use the substitution \( u = \frac{1}{x} \), which gives \( du = -\frac{1}{x^2} dx \) or \( dx = -\frac{1}{u^2} du \). The limits change as follows: - When \( x = \frac{1}{2} \), \( u = 2 \) - When \( x = 1 \), \( u = 1 \) Thus, we have: \[ \int_{\frac{1}{2}}^{1} x \sin\left(\frac{1}{x}\right) dx = -\int_{2}^{1} \frac{\sin(u)}{u^2} du = \int_{1}^{2} \frac{\sin(u)}{u^2} du \] 4. **Evaluate the First Integral**: Therefore, we have: \[ 2 \int_{\frac{1}{2}}^{1} x \sin\left(\frac{1}{x}\right) dx = 2 \int_{1}^{2} \frac{\sin(u)}{u^2} du \] 5. **Evaluate the Second Integral**: The second integral \( \int_{\frac{1}{2}}^{1} \cos\left(\frac{1}{x}\right) dx \) can also be evaluated using the same substitution \( u = \frac{1}{x} \): \[ \int_{\frac{1}{2}}^{1} \cos\left(\frac{1}{x}\right) dx = \int_{2}^{1} \cos(u) \left(-\frac{1}{u^2}\right) du = \int_{1}^{2} \frac{\cos(u)}{u^2} du \] 6. **Combine the Results**: Now we can combine both integrals: \[ \int_{\frac{1}{2}}^{1} \left( 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx = 2 \int_{1}^{2} \frac{\sin(u)}{u^2} du - \int_{1}^{2} \frac{\cos(u)}{u^2} du \] 7. **Final Expression**: Thus, the final expression becomes: \[ \int_{\frac{1}{2}}^{1} \left( 2x \sin\left(\frac{1}{x}\right) - \cos\left(\frac{1}{x}\right) \right) dx = \int_{1}^{2} \left( 2 \frac{\sin(u)}{u^2} - \frac{\cos(u)}{u^2} \right) du \] 8. **Evaluate the Integral**: This can be evaluated numerically or using tables of integrals.
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

The value of int _(0)^(4//pi) (3x ^(2) sin ""(1)/(x)-x cos ""(1)/(x )) dx is:

The value of int_(-2)^(2)(x cos x+sin x+1)dx is

The value of int_(-2)^(2)(x cos x+sin x+1)dx is

int_(1//pi)^(2//pi)(sin(1//x)+cos(1//x))/(x^(2))dx=

The value of ({int_(-1//2)^(1//2) cos2x.log((1+x)/(1-x))dx})/({int_(0)^(1//2)cos2x.log((1+x)/(1-x))dx}) is

The value of int_(-1)^(1)((x^(2)+ sin x)/(1+x^(2)))dx is equal to

The value of int_(-pi)^(pi)(1-x^(2)) sin x cos^(2) x" dx" , is

If int_(0)^((pi)/(2))(dx)/(1+sin x+cos x)=In2, then the value of int_(0)^((pi)/(2))(sin x)/(1+sin x+cos x)dx is equal to:

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 2) Single Correct Answer Type Questions
  1. If Q(x) = (1)/(2) a(0) + a(1) cos x + b(1) sin x+ a(2) cos 2x +…+ a(n)...

    Text Solution

    |

  2. The value of int(- sqrt(3) )^( sqrt(3)) ((d)/(dx ) ( tan^(-1) (1/ x)) ...

    Text Solution

    |

  3. The value of int(1//2)^(1) (2 x sin (1)/(x) - cos (1)/(x) ) dx is

    Text Solution

    |

  4. Let f be a continuous function [a, b] such that f(x) gt 0 for all x in...

    Text Solution

    |

  5. Let f be a continuous function on R satisfying f(x+y)= f(x) + f(y) for...

    Text Solution

    |

  6. If f(x) = cosec (x-pi/3) cosec (x-pi/6), then the value of int0^(pi/2)...

    Text Solution

    |

  7. int0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

    Text Solution

    |

  8. If l=int(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] den...

    Text Solution

    |

  9. The numbers A, B and C such that a function of the form f(x) = Ax^(2) ...

    Text Solution

    |

  10. The equation of the tangent to the curve y=int(x)^(x^2) log t dt at x=...

    Text Solution

    |

  11. The value of int(- pi//2)^(pi//2) ((2- sin theta)/( 2+ sin theta)) d t...

    Text Solution

    |

  12. The value of the integral overset(pi//4)underset(0)int (sinx+cosx)/(3+...

    Text Solution

    |

  13. If I1=intx^1 1/(1+t^2)dt and I2=int1^(1/x) 1/(1+t^2)dt for xgt0 then (...

    Text Solution

    |

  14. The solution for x of the equation overset(x)underset(sqrt(2))int(1)...

    Text Solution

    |

  15. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  16. int(0)^(pi) x log sinx dx

    Text Solution

    |

  17. overset(pi)underset(-ip)int [cos px-sin qx]^(2) dx where p,q are integ...

    Text Solution

    |

  18. Let f,g and h be continuous functions on [0,a] such that f(x) = f(a-x)...

    Text Solution

    |

  19. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  20. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |