Home
Class 12
MATHS
The numbers A, B and C such that a funct...

The numbers A, B and C such that a function of the form `f(x) = Ax^(2) + Bx + C` satisfies the conditions `f'(1)= 8, f(2) + f''(2) = 33 and int_(0)^(1) f(x) dx=7//3`, are

A

`A=1, B=-4, C=2`

B

`A=7, B=-6, C=3`

C

`A=8, B=-6, C=3`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the values of A, B, and C for the function \( f(x) = Ax^2 + Bx + C \) given the conditions: 1. \( f'(1) = 8 \) 2. \( f(2) + f''(2) = 33 \) 3. \( \int_0^1 f(x) \, dx = \frac{7}{3} \) ### Step 1: Find \( f'(x) \) and use the first condition The derivative of \( f(x) \) is: \[ f'(x) = 2Ax + B \] Using the first condition \( f'(1) = 8 \): \[ f'(1) = 2A(1) + B = 2A + B = 8 \quad \text{(Equation 1)} \] ### Step 2: Find \( f''(x) \) and use the second condition The second derivative of \( f(x) \) is: \[ f''(x) = 2A \] Now, we need to calculate \( f(2) \): \[ f(2) = A(2^2) + B(2) + C = 4A + 2B + C \] Using the second condition \( f(2) + f''(2) = 33 \): \[ f(2) + f''(2) = (4A + 2B + C) + 2A = 6A + 2B + C = 33 \quad \text{(Equation 2)} \] ### Step 3: Evaluate the integral and use the third condition Now we calculate the integral: \[ \int_0^1 f(x) \, dx = \int_0^1 (Ax^2 + Bx + C) \, dx \] Calculating the integral: \[ \int_0^1 Ax^2 \, dx = \left[ \frac{A}{3} x^3 \right]_0^1 = \frac{A}{3} \] \[ \int_0^1 Bx \, dx = \left[ \frac{B}{2} x^2 \right]_0^1 = \frac{B}{2} \] \[ \int_0^1 C \, dx = [Cx]_0^1 = C \] Thus, \[ \int_0^1 f(x) \, dx = \frac{A}{3} + \frac{B}{2} + C \] Setting this equal to \( \frac{7}{3} \): \[ \frac{A}{3} + \frac{B}{2} + C = \frac{7}{3} \quad \text{(Equation 3)} \] ### Step 4: Solve the system of equations Now we have three equations: 1. \( 2A + B = 8 \) (Equation 1) 2. \( 6A + 2B + C = 33 \) (Equation 2) 3. \( \frac{A}{3} + \frac{B}{2} + C = \frac{7}{3} \) (Equation 3) #### From Equation 1: We can express \( B \) in terms of \( A \): \[ B = 8 - 2A \quad \text{(Substituting into other equations)} \] #### Substitute \( B \) into Equation 2: \[ 6A + 2(8 - 2A) + C = 33 \] \[ 6A + 16 - 4A + C = 33 \] \[ 2A + C = 17 \quad \text{(Equation 4)} \] #### Substitute \( B \) into Equation 3: \[ \frac{A}{3} + \frac{8 - 2A}{2} + C = \frac{7}{3} \] \[ \frac{A}{3} + 4 - A + C = \frac{7}{3} \] \[ \frac{A}{3} - A + C = \frac{7}{3} - 4 \] \[ \frac{A}{3} - A + C = -\frac{5}{3} \] \[ -\frac{2A}{3} + C = -\frac{5}{3} \quad \text{(Equation 5)} \] ### Step 5: Solve Equations 4 and 5 From Equation 4: \[ C = 17 - 2A \] Substituting \( C \) into Equation 5: \[ -\frac{2A}{3} + (17 - 2A) = -\frac{5}{3} \] \[ -\frac{2A}{3} + 17 - 2A = -\frac{5}{3} \] Multiplying through by 3 to eliminate fractions: \[ -2A + 51 - 6A = -5 \] \[ -8A + 51 = -5 \] \[ -8A = -56 \] \[ A = 7 \] ### Step 6: Find \( B \) and \( C \) Using \( A = 7 \) in Equation 1: \[ B = 8 - 2(7) = 8 - 14 = -6 \] Using \( A = 7 \) in Equation 4: \[ C = 17 - 2(7) = 17 - 14 = 3 \] ### Final Values Thus, the values are: \[ A = 7, \quad B = -6, \quad C = 3 \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=Ax^(2)+Bx satisfies the conditions f'(1)=8 and int_(0)^(1)f(x)dx=(8)/(3), then

Find a function of the form f(x)=ax^(2)+bx+C . If it is known that f(0)=5, f(-1)=10, f(1)=6 .

If f(x) =ax^(2) + bx + c satisfies the identity f(x+1) -f(x)= 8x+ 3 for all x in R Then (a,b)=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(2-x)=0 , then int_(0)^(2)(1)/(1+2^(f(x)))dx=

If f(x)+f(3-x)=0 ,then int_(0)^(3)1/(1+2^(f(x)))dx=

If f(x)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=ae^(2x)+be^(x)+cx satisfies the condition f(0)=-1, f'(log2)=31,int_(0)^(log4)(f(x)-cx)dx=(39)/(2) , then

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 2) Single Correct Answer Type Questions
  1. int0^1log(sqrt(1-x)+sqrt(1+x))dx equals:

    Text Solution

    |

  2. If l=int(0)^(1//2)(dx)/(sqrt(1-x^(2n))), n in N then (Where, [.] den...

    Text Solution

    |

  3. The numbers A, B and C such that a function of the form f(x) = Ax^(2) ...

    Text Solution

    |

  4. The equation of the tangent to the curve y=int(x)^(x^2) log t dt at x=...

    Text Solution

    |

  5. The value of int(- pi//2)^(pi//2) ((2- sin theta)/( 2+ sin theta)) d t...

    Text Solution

    |

  6. The value of the integral overset(pi//4)underset(0)int (sinx+cosx)/(3+...

    Text Solution

    |

  7. If I1=intx^1 1/(1+t^2)dt and I2=int1^(1/x) 1/(1+t^2)dt for xgt0 then (...

    Text Solution

    |

  8. The solution for x of the equation overset(x)underset(sqrt(2))int(1)...

    Text Solution

    |

  9. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  10. int(0)^(pi) x log sinx dx

    Text Solution

    |

  11. overset(pi)underset(-ip)int [cos px-sin qx]^(2) dx where p,q are integ...

    Text Solution

    |

  12. Let f,g and h be continuous functions on [0,a] such that f(x) = f(a-x)...

    Text Solution

    |

  13. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  14. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  15. Let P(x) be a polynomial of least degree whose graph has three points ...

    Text Solution

    |

  16. lim(n->oo){(e^(1//n))/(n^2)+(2*(e^(1//n))^2)/(n^2)+(3*(e^(1//n))^3)/(n...

    Text Solution

    |

  17. The value of int0^1lim(n->oo)sum(k=0)^n(x^(k+2)2^k)/(k!)dx is:

    Text Solution

    |

  18. The value of int(0)^(1) (x^( 2 alpha) - 1)/( log x) dx, if alpha = (2n...

    Text Solution

    |

  19. The value of alpha in (-pi, 0) satisfying sin alpha+underset(alpha)ov...

    Text Solution

    |

  20. Let g(x) = {{:(1,",",0 le x lt 1),(x^3, ",",1 le x lt 4),(sqrtx, ",",4...

    Text Solution

    |