Home
Class 12
MATHS
If I1=intx^1 1/(1+t^2)dt and I2=int1^(1/...

If `I_1=int_x^1 1/(1+t^2)dt` and `I_2=int_1^(1/x) 1/(1+t^2)dt` for `xgt0` then (A) `I_1=I_2` (B) `I_1gtI_2` (C) `I_1ltI_2` (D) None of these

A

`I_(1) gt I_(2)`

B

`I_(1) = I_(2)`

C

`I_(2) gt I_(1)`

D

`I_(2) = (pi//2) - tan^(-1) x`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If I_(1)=int_(x)^(1)(1)/(1+t^(2))dt and I_(2)=int_(1)^((1)/(2))(1)/(1+t^(2))dt for x>=0 then (A) I_(1)=I_(2)(B)I_(1)>I_(2)(C)I_(1)

Let I_(1)=int_(1)^(2)(1)/(sqrt(1+x^(2)))dx and I_(2)=int_(1)^(2)(1)/(x)dx .Then

If I_(1)=int_(0)^(2pi)sin^(3)xdx and I_(2)=int_(0)^(1)ln((1)/(x)-1)dx , then

If f(x) is an integrable function and f^-1(x) exists, then int f^-1(x)dx can be easily evaluated by using integration by parts. Sometimes it is convenient to evaluate int f^-1(x)dx by putting z=f^-1(x) .Now answer the question.If I_1=int_a^b[f^2(x)-f^2(a)]dx and I_2=int_(f(a))^(f(b)) 2x[b-f^-1(x)]dx!=0 , then I_1/I_2= (A) 1:2 (B) 2:1 (C) 1:1 (D) none of these

If I_(1)=int_(a)^(1-a)x.e^(x(1-x))dx and I_(2)=int_(a)^(1-a)e^(x(1-x))dx , then I_(1):I_(2) =

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 2) Single Correct Answer Type Questions
  1. The value of int(- pi//2)^(pi//2) ((2- sin theta)/( 2+ sin theta)) d t...

    Text Solution

    |

  2. The value of the integral overset(pi//4)underset(0)int (sinx+cosx)/(3+...

    Text Solution

    |

  3. If I1=intx^1 1/(1+t^2)dt and I2=int1^(1/x) 1/(1+t^2)dt for xgt0 then (...

    Text Solution

    |

  4. The solution for x of the equation overset(x)underset(sqrt(2))int(1)...

    Text Solution

    |

  5. The mean value of the function f(x)= 2/(e^x+1) in the interval [0,2] i...

    Text Solution

    |

  6. int(0)^(pi) x log sinx dx

    Text Solution

    |

  7. overset(pi)underset(-ip)int [cos px-sin qx]^(2) dx where p,q are integ...

    Text Solution

    |

  8. Let f,g and h be continuous functions on [0,a] such that f(x) = f(a-x)...

    Text Solution

    |

  9. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  10. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  11. Let P(x) be a polynomial of least degree whose graph has three points ...

    Text Solution

    |

  12. lim(n->oo){(e^(1//n))/(n^2)+(2*(e^(1//n))^2)/(n^2)+(3*(e^(1//n))^3)/(n...

    Text Solution

    |

  13. The value of int0^1lim(n->oo)sum(k=0)^n(x^(k+2)2^k)/(k!)dx is:

    Text Solution

    |

  14. The value of int(0)^(1) (x^( 2 alpha) - 1)/( log x) dx, if alpha = (2n...

    Text Solution

    |

  15. The value of alpha in (-pi, 0) satisfying sin alpha+underset(alpha)ov...

    Text Solution

    |

  16. Let g(x) = {{:(1,",",0 le x lt 1),(x^3, ",",1 le x lt 4),(sqrtx, ",",4...

    Text Solution

    |

  17. underset(x to 0)lim(underset(-x)overset(x)int f(t)dt)/(underset(0)over...

    Text Solution

    |

  18. If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int-2^3f(x)dx= (...

    Text Solution

    |

  19. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  20. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |