Home
Class 12
MATHS
If I(m,n)=int0^1 t^m(1+t)^n.dt, then the...

If `I(m,n)=int_0^1 t^m(1+t)^n.dt`, then the expression for I(m,n) in terms of I(m+1,n-1) is:

A

`(2^n)/( m+1) - (n)/( m+1) l (m+1, n-1)`

B

`(n)/( m+1) l (m+1, n-1)`

C

`(2^n)/( m+1) + (n)/( m+1) l (m+1, n-1)`

D

`(m)/(n+1) l (m+1, n-1)`

Text Solution

Verified by Experts

The correct Answer is:
A
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 2) Numerical Answer Type Questions|19 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. AIEEE/ JEE Main Papers|65 Videos
  • DEFINITE INTEGRALS

    MCGROW HILL PUBLICATION|Exercise EXERCISE (LEVEL 1) Single Correct Answer Type Questions|43 Videos
  • COMPLEX NUMBERS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. B-ARCHITECTURE ENTRANCE EXAMINATION PAPER|17 Videos
  • DETERMINANTS

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS B-ARCHITECTURE ENTRANCE EXAMINATION PAPERS|18 Videos

Similar Questions

Explore conceptually related problems

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx, then

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

If L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt , then prove that L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)

If (a^(m))^(n)=a^(m^(n)) , then express 'm' in the terms of n is (agt0, ane0, mgt1, ngt1)

If I(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m,n in I,m,n>=0),th epsilonI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m-n))dxI(m,n)=int_(0)^(oo)(x^(m-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n-1))/((1+x)^(m+n))dxI(m,n)=int_(0)^(oo)(x^(n))/((1+x)^(m+n))dx

If I_(m,n)=int cos^(m)theta*cos n theta and dd;theta, prove that t(m+n)I_(m,n)-mI_(m-1,n-1)=cos^(m)theta*sin n theta

if I_(m,n)=int(x^(m))/((log x)^(n))dx, then (m+1)I_(m,n)-nI_(m,n+1) is

If I_(m,n)= int(sinx)^(m)(cosx)^(n) dx then prove that I_(m,n) = ((sinx)^(m+1)(cosx)^(n-1))/(m+n) +(n-1)/(m+n). I_(m,n-2)

MCGROW HILL PUBLICATION-DEFINITE INTEGRALS-EXERCISE (LEVEL 2) Single Correct Answer Type Questions
  1. int(0)^(pi) x log sinx dx

    Text Solution

    |

  2. overset(pi)underset(-ip)int [cos px-sin qx]^(2) dx where p,q are integ...

    Text Solution

    |

  3. Let f,g and h be continuous functions on [0,a] such that f(x) = f(a-x)...

    Text Solution

    |

  4. Ifint(pi/3)^xsqrt((3-sin^2t))dt+int0^ycostdt=0,t h e ne v a l u a t e(...

    Text Solution

    |

  5. If P(x) is a polynomial of the least degree that has a maximum equal ...

    Text Solution

    |

  6. Let P(x) be a polynomial of least degree whose graph has three points ...

    Text Solution

    |

  7. lim(n->oo){(e^(1//n))/(n^2)+(2*(e^(1//n))^2)/(n^2)+(3*(e^(1//n))^3)/(n...

    Text Solution

    |

  8. The value of int0^1lim(n->oo)sum(k=0)^n(x^(k+2)2^k)/(k!)dx is:

    Text Solution

    |

  9. The value of int(0)^(1) (x^( 2 alpha) - 1)/( log x) dx, if alpha = (2n...

    Text Solution

    |

  10. The value of alpha in (-pi, 0) satisfying sin alpha+underset(alpha)ov...

    Text Solution

    |

  11. Let g(x) = {{:(1,",",0 le x lt 1),(x^3, ",",1 le x lt 4),(sqrtx, ",",4...

    Text Solution

    |

  12. underset(x to 0)lim(underset(-x)overset(x)int f(t)dt)/(underset(0)over...

    Text Solution

    |

  13. If f(x)={(e^(cosx)sinx, |x|le2),(2, otherwise):} then int-2^3f(x)dx= (...

    Text Solution

    |

  14. The value of int-pi^pi cos^2x/[1+a^x].dx,a>0 is

    Text Solution

    |

  15. Let f:(0, oo) in R and F(x) =underset(0)overset(x) int f(t) dt. If F(x...

    Text Solution

    |

  16. Let f(x)=int1^xsqrt(2-t^2)dtdot Then the real roots of the equation , ...

    Text Solution

    |

  17. If I(m,n)=int0^1 t^m(1+t)^n.dt, then the expression for I(m,n) in term...

    Text Solution

    |

  18. int0^1sqrt((1-x)/(1+x))dx

    Text Solution

    |

  19. If f(x) is differentiable and int0^(t^2)xf(x)dx=2/5t^5, then f(4/(25))...

    Text Solution

    |

  20. int(-2)^0{x^3+3x^2+3x+3+(x+1)cos(x+1)dxi se q u a lto -4 (b) 0 (c...

    Text Solution

    |