Home
Class 12
MATHS
If any tangent to the parabola x^(2)=4y ...

If any tangent to the parabola `x^(2)=4y` intersects the hyperbola `xy=2` at two points P and Q , then the mid point of the line segment PQ lies on a parabola with axs along

A

x-axis and focus on positive x-axis

B

y-axis and focus on positive y-axis

C

x-axis and focus on negative x-axis

D

y-axis and focus on negative y-axis.

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • PARABOLA

    MCGROW HILL PUBLICATION|Exercise QUESTIONS FROM PREVIOUS YEARS. AIEEE/JEE MAIN PAPERS|36 Videos
  • MATRICES

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B -Architecture Entrance Examination Papers|22 Videos
  • PERMUTATIONS AND COMBINATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers |17 Videos

Similar Questions

Explore conceptually related problems

If any tangent to the parabola x^(2) = 4y intersects the hyperbola xy = 2 at two points P and Q, then the mid point of line segment PQ lies on a parabola with axis along:

A tangent to the parabola x^(2) = 4ay meets the hyperbola x^(2) - y^(2) = a^(2) in two points P and Q, then mid point of P and Q lies on the curve

A tangent to the parabolax^2 =4ay meets the hyperbola xy = c^2 in two points P and Q. Then the midpoint of PQ lies on (A) a parabola (C) a hyperbola (B) an ellipse (D) a circle

A variable tangent to the parabola y^(2)=4ax meets the parabola y^(2)=-4ax P and Q. The locus of the mid-point of PQ, is

If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axes at distinct points P and Q, then the locus of the mid-point of PQ is :

If a tangent to the circle x^(2)+y^(2)=1 intersects the coordinate axes at distinct point P and Q. then the locus of the mid- point of PQ is

A tangent to the parabola y^(2)+4bx=0 meet, the parabola y^(2)=4ax in P and Q.Then t locus of midpoint of PQ is.