Home
Class 12
MATHS
Given a=i+j-k, b=-i+2j+k" and "c=-i+2j-k...

Given `a=i+j-k, b=-i+2j+k" and "c=-i+2j-k`. A unit vector perpendicular to both a + b and b + c is

A

`(2i+j+k)/sqrt(6)`

B

j

C

k

D

`(i+j+k)/sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find a unit vector that is perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{b} + \mathbf{c} \), we can follow these steps: ### Step 1: Calculate \( \mathbf{a} + \mathbf{b} \) Given: \[ \mathbf{a} = \mathbf{i} + \mathbf{j} - \mathbf{k} \] \[ \mathbf{b} = -\mathbf{i} + 2\mathbf{j} + \mathbf{k} \] Now, we can add \( \mathbf{a} \) and \( \mathbf{b} \): \[ \mathbf{a} + \mathbf{b} = (\mathbf{i} + \mathbf{j} - \mathbf{k}) + (-\mathbf{i} + 2\mathbf{j} + \mathbf{k}) \] Combining like terms: \[ = (\mathbf{i} - \mathbf{i}) + (\mathbf{j} + 2\mathbf{j}) + (-\mathbf{k} + \mathbf{k}) = 0 + 3\mathbf{j} + 0 = 3\mathbf{j} \] ### Step 2: Calculate \( \mathbf{b} + \mathbf{c} \) Given: \[ \mathbf{c} = -\mathbf{i} + 2\mathbf{j} - \mathbf{k} \] Now, we can add \( \mathbf{b} \) and \( \mathbf{c} \): \[ \mathbf{b} + \mathbf{c} = (-\mathbf{i} + 2\mathbf{j} + \mathbf{k}) + (-\mathbf{i} + 2\mathbf{j} - \mathbf{k}) \] Combining like terms: \[ = (-\mathbf{i} - \mathbf{i}) + (2\mathbf{j} + 2\mathbf{j}) + (\mathbf{k} - \mathbf{k}) = -2\mathbf{i} + 4\mathbf{j} + 0 = -2\mathbf{i} + 4\mathbf{j} \] ### Step 3: Find the cross product \( (\mathbf{a} + \mathbf{b}) \times (\mathbf{b} + \mathbf{c}) \) Now we need to find the cross product of \( \mathbf{u} = 3\mathbf{j} \) and \( \mathbf{v} = -2\mathbf{i} + 4\mathbf{j} \). Using the determinant form for the cross product: \[ \mathbf{u} \times \mathbf{v} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 0 & 3 & 0 \\ -2 & 4 & 0 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 3 & 0 \\ 4 & 0 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 0 & 0 \\ -2 & 0 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 0 & 3 \\ -2 & 4 \end{vmatrix} \] Calculating each of these determinants: 1. \( \begin{vmatrix} 3 & 0 \\ 4 & 0 \end{vmatrix} = 0 \) 2. \( \begin{vmatrix} 0 & 0 \\ -2 & 0 \end{vmatrix} = 0 \) 3. \( \begin{vmatrix} 0 & 3 \\ -2 & 4 \end{vmatrix} = (0 \cdot 4) - (3 \cdot -2) = 6 \) So, we have: \[ \mathbf{u} \times \mathbf{v} = 0\mathbf{i} - 0\mathbf{j} + 6\mathbf{k} = 6\mathbf{k} \] ### Step 4: Find the unit vector To find the unit vector, we divide by the magnitude of the vector \( 6\mathbf{k} \): \[ \text{Magnitude} = |6\mathbf{k}| = 6 \] Thus, the unit vector \( \mathbf{p} \) is: \[ \mathbf{p} = \frac{6\mathbf{k}}{6} = \mathbf{k} \] ### Final Answer The unit vector perpendicular to both \( \mathbf{a} + \mathbf{b} \) and \( \mathbf{b} + \mathbf{c} \) is: \[ \mathbf{k} \] ---
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

A unit vector perpendicular to 3i+4j" and "i-j+k is

If a=i+j-k,b=i-j+k and c is a unit vector perpendicular to the vector a and coplanar with a and b,then aunit vector d perpendicular to both a and c is

Given the vectors a=3i-j+5k" and "b=i+2j-3k . A vector c which is perpendicular to the z-axis and satisfies c*a=9" and "c*b=-4 is

If vec a=i+2j+k,vec b=2i+j and vec c=3i-4j-5k, then find a unit vector perpendicular to both of the vectors (vec a-vec b) and (vec c-vec b)

A unit vector c perpendicular to a=i-j and coplanar with a and b=i+k is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)
  1. If abs(a)=2, abs(b)=3, abs(c)=4" and "a+b+c=0 then the value of b*c+c...

    Text Solution

    |

  2. A,B,C,D are four points in space and |bar(AB) times bar(CD) +bar(BC) t...

    Text Solution

    |

  3. Given a=i+j-k, b=-i+2j+k" and "c=-i+2j-k. A unit vector perpendicular ...

    Text Solution

    |

  4. If vec a , vec ba n d vec c are unit coplanar vectors, then the sc...

    Text Solution

    |

  5. If the vectors vec a , vec b ,a n d vec c form the sidesB C ,C Aa n d...

    Text Solution

    |

  6. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  7. Let barV = 2i + j - k and barW = i + 3k If barU is a unit vector, th...

    Text Solution

    |

  8. A vector c perpendicular to the vectors 2i+3j-k" and "i-2j+3k satisfyi...

    Text Solution

    |

  9. If a, b, c be three units vectors such that a xx (b xx c)=(1/2) b ;...

    Text Solution

    |

  10. If a vector ofmagnitude 50 is collinear with vector vecb = 6 hat i - 8...

    Text Solution

    |

  11. IfA, B are two points on the curve y = x^2 in the xoy plane satisfying...

    Text Solution

    |

  12. If A, B, C, D are four points in space satisfying bar(AB).bar(CD)=K ...

    Text Solution

    |

  13. The distance of the point B with position vector i+2j+3k from the line...

    Text Solution

    |

  14. If a, b and c are unit vectors then abs(a-b)^(2)+abs(b-c)^(2)+abs(c-a)...

    Text Solution

    |

  15. Find the value of a so that the volume of the parallelepiped formed...

    Text Solution

    |

  16. If a=i-j-k,a*b=1" and "a times b=-j+k, then k is equal to

    Text Solution

    |

  17. The unit vector which is orthogonal to the vector 5i+2j+6k and is copl...

    Text Solution

    |

  18. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  19. If abs(a)=1, abs(b)=2" and "abs(a-2b)=4" then "abs(a+3b) is equal to

    Text Solution

    |

  20. If abs(a)^(2)=8" and "a times (i+j+2k)=0 then the value of a*(-i+j+4k)...

    Text Solution

    |