Home
Class 12
MATHS
If a=i-j-k,a*b=1" and "a times b=-j+k, t...

If `a=i-j-k,a*b=1" and "a times b=-j+k`, then k is equal to

A

`i+j-k`

B

`-2j+k`

C

`i`

D

`2j+k`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( k \) given the vectors \( \mathbf{a} = \mathbf{i} - \mathbf{j} - \mathbf{k} \), \( \mathbf{a} \cdot \mathbf{b} = 1 \), and \( \mathbf{a} \times \mathbf{b} = -\mathbf{j} + \mathbf{k} \). ### Step-by-Step Solution: 1. **Define the vector \( \mathbf{b} \)**: Let \( \mathbf{b} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \). 2. **Use the dot product condition**: The dot product \( \mathbf{a} \cdot \mathbf{b} = 1 \): \[ (\mathbf{i} - \mathbf{j} - \mathbf{k}) \cdot (x\mathbf{i} + y\mathbf{j} + z\mathbf{k}) = 1 \] This expands to: \[ x - y - z = 1 \quad \text{(Equation 1)} \] 3. **Use the cross product condition**: The cross product \( \mathbf{a} \times \mathbf{b} = -\mathbf{j} + \mathbf{k} \): \[ \mathbf{a} \times \mathbf{b} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & -1 & -1 \\ x & y & z \end{vmatrix} \] This determinant can be calculated as: \[ = \mathbf{i} \begin{vmatrix} -1 & -1 \\ y & z \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & -1 \\ x & z \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & -1 \\ x & y \end{vmatrix} \] Calculating each of these determinants: \[ = \mathbf{i}((-1)z - (-1)y) - \mathbf{j}(1z - (-1)x) + \mathbf{k}(1y - (-1)x) \] Simplifying gives: \[ = (y - z)\mathbf{i} - (z + x)\mathbf{j} + (y + x)\mathbf{k} \] Setting this equal to \( -\mathbf{j} + \mathbf{k} \): \[ (y - z)\mathbf{i} - (z + x)\mathbf{j} + (y + x)\mathbf{k} = 0\mathbf{i} - 1\mathbf{j} + 1\mathbf{k} \] 4. **Equate coefficients**: From the above equation, we can equate the coefficients: \[ y - z = 0 \quad \text{(Equation 2)} \] \[ - (z + x) = -1 \implies z + x = 1 \quad \text{(Equation 3)} \] \[ y + x = 1 \quad \text{(Equation 4)} \] 5. **Solve the equations**: From Equation 2, we have: \[ y = z \] Substitute \( y = z \) into Equation 3: \[ z + x = 1 \implies y + x = 1 \quad \text{(since \( y = z \))} \] Thus, we have: \[ x + z = 1 \quad \text{(Equation 3)} \] Now substituting \( y = z \) into Equation 1: \[ x - z - z = 1 \implies x - 2z = 1 \quad \text{(Equation 5)} \] 6. **Solve Equations 3 and 5**: From Equation 3: \[ x = 1 - z \] Substitute into Equation 5: \[ (1 - z) - 2z = 1 \implies 1 - 3z = 1 \implies -3z = 0 \implies z = 0 \] Therefore, \( y = z = 0 \). 7. **Find \( x \)**: Substitute \( z = 0 \) into Equation 3: \[ x + 0 = 1 \implies x = 1 \] 8. **Conclusion**: We have found \( x = 1 \), \( y = 0 \), and \( z = 0 \). Thus, \( k = z = 0 \). ### Final Answer: \[ k = 0 \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let a=2i+2j+k and b be another vector such that a*b=14" and "a times b=3i+j-8k then the vector b is equal to

if a=(i+j+k),a.b=1 and ab=j-k then b is equal to

vec a=(hat i+hat j+hat k),vec a*vec b=1 and vec a xxvec b=hat j-hat k, then hat b is hat i-hat j+hat k b.2hat j-hat k c.hat i d.2hat i

If a=i+j+k" and "b=i-j+2k then the projection of a on b is given by

If a=2i-3j+5k, b=3i-4j+5k" and "c=5i-3j-2k then volume of the parallelopiped with coterminus edges a+b, b+c, c+a is _______

If a=1+2j-3k,b=2i+j-k and u is a vector satisfying a times u=a times b and a .u=0 then 2|u|^(2) is equal to

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)
  1. If a, b and c are unit vectors then abs(a-b)^(2)+abs(b-c)^(2)+abs(c-a)...

    Text Solution

    |

  2. Find the value of a so that the volume of the parallelepiped formed...

    Text Solution

    |

  3. If a=i-j-k,a*b=1" and "a times b=-j+k, then k is equal to

    Text Solution

    |

  4. The unit vector which is orthogonal to the vector 5i+2j+6k and is copl...

    Text Solution

    |

  5. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  6. If abs(a)=1, abs(b)=2" and "abs(a-2b)=4" then "abs(a+3b) is equal to

    Text Solution

    |

  7. If abs(a)^(2)=8" and "a times (i+j+2k)=0 then the value of a*(-i+j+4k)...

    Text Solution

    |

  8. If a, b, c are unit vectors, then the maximum value of abs(a+2b)^(2)+a...

    Text Solution

    |

  9. Let veca=2hati+hatj-2hatk, vecb=hati+hatj. If vecc is a vector such th...

    Text Solution

    |

  10. The non-zero vectors are vec a,vec b and vec c are related by vec a= ...

    Text Solution

    |

  11. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  12. vectors veca=i-j+2k , vecb=2i+4j+k and vecc=lambdai+j+muk are mutually...

    Text Solution

    |

  13. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  14. If a=1/sqrt(10)(3i+k)" and "b=1/7(2i+3j-6k), then the value of (2a-b)....

    Text Solution

    |

  15. The vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  16. If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1...

    Text Solution

    |

  17. Let a,b and c be three non-zero vectors which are pairwise non-colline...

    Text Solution

    |

  18. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  19. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  20. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |