Home
Class 12
MATHS
The unit vector which is orthogonal to t...

The unit vector which is orthogonal to the vector `5i+2j+6k` and is coplanar with the vectors `2i+j+k" and "i-j+k` is

A

`1/sqrt(41)(2i-6j+k)`

B

`1/sqrt(29)(2i-5j)`

C

`1/sqrt(10)(3j-k)`

D

`1/sqrt(69)(2i-8j+k)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the unit vector that is orthogonal to the vector \( \mathbf{A} = 5\mathbf{i} + 2\mathbf{j} + 6\mathbf{k} \) and coplanar with the vectors \( \mathbf{B} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} \) and \( \mathbf{C} = \mathbf{i} - \mathbf{j} + \mathbf{k} \), we can follow these steps: ### Step 1: Set up the orthogonality condition A vector \( \mathbf{P} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k} \) is orthogonal to \( \mathbf{A} \) if their dot product is zero: \[ \mathbf{P} \cdot \mathbf{A} = 0 \] This gives us the equation: \[ 5x + 2y + 6z = 0 \tag{1} \] ### Step 2: Set up the coplanarity condition The vector \( \mathbf{P} \) is coplanar with \( \mathbf{B} \) and \( \mathbf{C} \) if the scalar triple product is zero: \[ \mathbf{P} \cdot (\mathbf{B} \times \mathbf{C}) = 0 \] First, we need to calculate \( \mathbf{B} \times \mathbf{C} \): \[ \mathbf{B} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}, \quad \mathbf{C} = \begin{pmatrix} 1 \\ -1 \\ 1 \end{pmatrix} \] Using the determinant: \[ \mathbf{B} \times \mathbf{C} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 2 & 1 & 1 \\ 1 & -1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & 1 \\ -1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 2 & 1 \\ 1 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 2 & 1 \\ 1 & -1 \end{vmatrix} \] \[ = \mathbf{i} (1 - (-1)) - \mathbf{j} (2 - 1) + \mathbf{k} (-2 - 1) \] \[ = 2\mathbf{i} - \mathbf{j} - 3\mathbf{k} \] Thus, \( \mathbf{B} \times \mathbf{C} = 2\mathbf{i} - \mathbf{j} - 3\mathbf{k} \). Now, we set up the equation for the coplanarity condition: \[ \mathbf{P} \cdot (2\mathbf{i} - \mathbf{j} - 3\mathbf{k}) = 0 \] This gives us: \[ 2x - y - 3z = 0 \tag{2} \] ### Step 3: Solve the system of equations Now we have two equations: 1. \( 5x + 2y + 6z = 0 \) (1) 2. \( 2x - y - 3z = 0 \) (2) From equation (2), we can express \( y \) in terms of \( x \) and \( z \): \[ y = 2x - 3z \] Substituting this into equation (1): \[ 5x + 2(2x - 3z) + 6z = 0 \] \[ 5x + 4x - 6z + 6z = 0 \] \[ 9x = 0 \implies x = 0 \] Substituting \( x = 0 \) back into the expression for \( y \): \[ y = 2(0) - 3z = -3z \] Thus, we have: \[ \mathbf{P} = 0\mathbf{i} - 3z\mathbf{j} + z\mathbf{k} = -3z\mathbf{j} + z\mathbf{k} \] ### Step 4: Normalize the vector to find the unit vector To find the unit vector, we need to set the magnitude of \( \mathbf{P} \) equal to 1: \[ \|\mathbf{P}\| = \sqrt{(-3z)^2 + z^2} = \sqrt{9z^2 + z^2} = \sqrt{10z^2} = |z|\sqrt{10} \] Setting this equal to 1: \[ |z|\sqrt{10} = 1 \implies |z| = \frac{1}{\sqrt{10}} \implies z = \pm \frac{1}{\sqrt{10}} \] ### Step 5: Find the unit vector Substituting \( z = \frac{1}{\sqrt{10}} \) into \( \mathbf{P} \): \[ \mathbf{P} = -3\left(\frac{1}{\sqrt{10}}\right)\mathbf{j} + \left(\frac{1}{\sqrt{10}}\right)\mathbf{k} = -\frac{3}{\sqrt{10}}\mathbf{j} + \frac{1}{\sqrt{10}}\mathbf{k} \] Thus, the unit vector is: \[ \mathbf{P} = \frac{-3\mathbf{j} + \mathbf{k}}{\sqrt{10}} \] ### Final Answer The required unit vector is: \[ \frac{-3\mathbf{j} + \mathbf{k}}{\sqrt{10}} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

The unit vector which is orthogonal to the vector 3vec i+2vec j+6vec k and is coplanar with the vector 2i+j+k and i-j+k

The unit vector which is orthogonal to the vector 3hat i+2hat j+6hat k and is coplanar with the vectors 2hat i+hat j+hat k and hat i-hat j+hat k is

The angle between the vectors i-j+k and -i+j+2k is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)
  1. If a, b and c are unit vectors then abs(a-b)^(2)+abs(b-c)^(2)+abs(c-a)...

    Text Solution

    |

  2. Find the value of a so that the volume of the parallelepiped formed...

    Text Solution

    |

  3. If a=i-j-k,a*b=1" and "a times b=-j+k, then k is equal to

    Text Solution

    |

  4. The unit vector which is orthogonal to the vector 5i+2j+6k and is copl...

    Text Solution

    |

  5. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  6. If abs(a)=1, abs(b)=2" and "abs(a-2b)=4" then "abs(a+3b) is equal to

    Text Solution

    |

  7. If abs(a)^(2)=8" and "a times (i+j+2k)=0 then the value of a*(-i+j+4k)...

    Text Solution

    |

  8. If a, b, c are unit vectors, then the maximum value of abs(a+2b)^(2)+a...

    Text Solution

    |

  9. Let veca=2hati+hatj-2hatk, vecb=hati+hatj. If vecc is a vector such th...

    Text Solution

    |

  10. The non-zero vectors are vec a,vec b and vec c are related by vec a= ...

    Text Solution

    |

  11. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  12. vectors veca=i-j+2k , vecb=2i+4j+k and vecc=lambdai+j+muk are mutually...

    Text Solution

    |

  13. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  14. If a=1/sqrt(10)(3i+k)" and "b=1/7(2i+3j-6k), then the value of (2a-b)....

    Text Solution

    |

  15. The vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  16. If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1...

    Text Solution

    |

  17. Let a,b and c be three non-zero vectors which are pairwise non-colline...

    Text Solution

    |

  18. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  19. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  20. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |