Home
Class 12
MATHS
If abs(a)^(2)=8" and "a times (i+j+2k)=0...

If `abs(a)^(2)=8" and "a times (i+j+2k)=0` then the value of `a*(-i+j+4k)` is

A

`4/sqrt(3)`

B

`16/sqrt(3)`

C

`8/sqrt(3)`

D

`1/sqrt(3)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( a \cdot (-i + j + 4k) \) given that \( |a|^2 = 8 \) and \( a \cdot (i + j + 2k) = 0 \). ### Step-by-Step Solution: 1. **Understanding the Given Conditions**: - We have \( |a|^2 = 8 \), which implies that \( a \) is a vector with a magnitude of \( \sqrt{8} = 2\sqrt{2} \). - The condition \( a \cdot (i + j + 2k) = 0 \) indicates that \( a \) is orthogonal to the vector \( (i + j + 2k) \). 2. **Expressing \( a \)**: - Since \( a \) is orthogonal to \( (i + j + 2k) \), we can express \( a \) in terms of a scalar multiple of the vector \( (i + j + 2k) \). - Let \( a = \lambda (i + j + 2k) \) for some scalar \( \lambda \). 3. **Finding the Magnitude of \( a \)**: - The magnitude of \( a \) can be computed as follows: \[ |a| = |\lambda| \cdot |(i + j + 2k)| \] - The magnitude of \( (i + j + 2k) \) is: \[ |(i + j + 2k)| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] - Therefore, we have: \[ |a| = |\lambda| \cdot \sqrt{6} \] 4. **Setting Up the Equation**: - From the condition \( |a|^2 = 8 \), we can write: \[ |\lambda|^2 \cdot 6 = 8 \] - This simplifies to: \[ |\lambda|^2 = \frac{8}{6} = \frac{4}{3} \] - Thus, we find: \[ |\lambda| = \frac{2}{\sqrt{3}} \] 5. **Expressing \( a \) in Component Form**: - Now substituting \( \lambda \) back into the expression for \( a \): \[ a = \frac{2}{\sqrt{3}} (i + j + 2k) = \frac{2}{\sqrt{3}} i + \frac{2}{\sqrt{3}} j + \frac{4}{\sqrt{3}} k \] 6. **Calculating \( a \cdot (-i + j + 4k) \)**: - Now we compute the dot product: \[ a \cdot (-i + j + 4k) = \left( \frac{2}{\sqrt{3}} i + \frac{2}{\sqrt{3}} j + \frac{4}{\sqrt{3}} k \right) \cdot (-i + j + 4k) \] - Expanding this: \[ = \frac{2}{\sqrt{3}}(-1) + \frac{2}{\sqrt{3}}(1) + \frac{4}{\sqrt{3}}(4) \] - This simplifies to: \[ = -\frac{2}{\sqrt{3}} + \frac{2}{\sqrt{3}} + \frac{16}{\sqrt{3}} = \frac{16}{\sqrt{3}} \] ### Final Answer: Thus, the value of \( a \cdot (-i + j + 4k) \) is \( \frac{16}{\sqrt{3}} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If abs(c)^(2)=60" and "c times (i+j+5k)=0 , then a value of c*(-7i+2j+3k) is:

The value of (r.i)i+(r.j)j+(r.k)k is

If a and b are vectors such that |a+b|=sqrt(29) and a xx(2i+3j+4k)=(2i+3j+4k)xx b, then a possivalue of (a+b)*(-7i+2j+3k) is

If vec a*hat i=4, then the value of vec a*{hat j xx(2hat j-3hat k)} is equal to

If theta is the between the line r = ( i + 2j- k) + lambda (i - j + 2k) , lambda in R and the plane r. (2i - j + k ) = 4. then a value of cos theta is :

If vec a*hat i=4, then the value of vec a{hat j xx(2hat j-3widehat K)} is equal to

If a=x""i+5j+7k, b=i+j-k, c=i+2j+2k are coplanar then the value of x is

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)
  1. If a, b and c are unit vectors then abs(a-b)^(2)+abs(b-c)^(2)+abs(c-a)...

    Text Solution

    |

  2. Find the value of a so that the volume of the parallelepiped formed...

    Text Solution

    |

  3. If a=i-j-k,a*b=1" and "a times b=-j+k, then k is equal to

    Text Solution

    |

  4. The unit vector which is orthogonal to the vector 5i+2j+6k and is copl...

    Text Solution

    |

  5. Let vec a= hat i+2 hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec...

    Text Solution

    |

  6. If abs(a)=1, abs(b)=2" and "abs(a-2b)=4" then "abs(a+3b) is equal to

    Text Solution

    |

  7. If abs(a)^(2)=8" and "a times (i+j+2k)=0 then the value of a*(-i+j+4k)...

    Text Solution

    |

  8. If a, b, c are unit vectors, then the maximum value of abs(a+2b)^(2)+a...

    Text Solution

    |

  9. Let veca=2hati+hatj-2hatk, vecb=hati+hatj. If vecc is a vector such th...

    Text Solution

    |

  10. The non-zero vectors are vec a,vec b and vec c are related by vec a= ...

    Text Solution

    |

  11. If vecu, vecv, vecw are non -coplanar vectors and p,q, are real numbe...

    Text Solution

    |

  12. vectors veca=i-j+2k , vecb=2i+4j+k and vecc=lambdai+j+muk are mutually...

    Text Solution

    |

  13. Let veca =hatj-hatk and vecc =hati-hatj-hatk. Then the vector b satisf...

    Text Solution

    |

  14. If a=1/sqrt(10)(3i+k)" and "b=1/7(2i+3j-6k), then the value of (2a-b)....

    Text Solution

    |

  15. The vectors a and b are not perpendicular and c and d are two vectors ...

    Text Solution

    |

  16. If the vectors pi + j + k, i + qj + k and i + j + rk, where pneqnerne1...

    Text Solution

    |

  17. Let a,b and c be three non-zero vectors which are pairwise non-colline...

    Text Solution

    |

  18. Let vec a= hat i+ hat j+ hat k , vec b= hat i- hat j+ hat ka n d vec ...

    Text Solution

    |

  19. If veca and vecb are two unit vectors such that veca+2vecb and 5veca-4...

    Text Solution

    |

  20. Let ABCD be a parallelogram such that vec AB = vec q,vec AD = vec p a...

    Text Solution

    |