Home
Class 12
MATHS
For unit vectors b and c and any non zer...

For unit vectors b and c and any non zero vector a, the value of `{{(a+b) times (a+c)} times (b times c)}*(b+c)` is

A

`abs(a)^(2)`

B

`2abs(a)^(2)`

C

`3abs(a)^(2)`

D

none of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \(((\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + \mathbf{c})) \cdot (\mathbf{b} \times \mathbf{c}) \cdot (\mathbf{b} + \mathbf{c})\). ### Step-by-Step Solution: 1. **Expand the Cross Product**: We start with the expression: \[ (\mathbf{a} + \mathbf{b}) \times (\mathbf{a} + \mathbf{c}) \] Using the distributive property of the cross product, we have: \[ = \mathbf{a} \times \mathbf{a} + \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{c} \] Since \(\mathbf{a} \times \mathbf{a} = \mathbf{0}\), we simplify this to: \[ = \mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{c} \] 2. **Cross with \(\mathbf{b} \times \mathbf{c}\)**: Now, we need to take the result and cross it with \(\mathbf{b} \times \mathbf{c}\): \[ (\mathbf{a} \times \mathbf{c} + \mathbf{b} \times \mathbf{a} + \mathbf{b} \times \mathbf{c}) \times (\mathbf{b} \times \mathbf{c}) \] We can distribute this: \[ = (\mathbf{a} \times \mathbf{c}) \times (\mathbf{b} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{a}) \times (\mathbf{b} \times \mathbf{c}) + (\mathbf{b} \times \mathbf{c}) \times (\mathbf{b} \times \mathbf{c}) \] The last term is zero because the cross product of any vector with itself is zero. 3. **Using the Vector Triple Product Identity**: For the first term, we use the vector triple product identity: \[ \mathbf{x} \times (\mathbf{y} \times \mathbf{z}) = (\mathbf{x} \cdot \mathbf{z}) \mathbf{y} - (\mathbf{x} \cdot \mathbf{y}) \mathbf{z} \] Applying this to \((\mathbf{a} \times \mathbf{c}) \times (\mathbf{b} \times \mathbf{c})\): \[ = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c} \] For the second term \((\mathbf{b} \times \mathbf{a}) \times (\mathbf{b} \times \mathbf{c})\): \[ = (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} - (\mathbf{b} \cdot \mathbf{a}) \mathbf{c} \] 4. **Combine the Results**: Combining the results from both terms, we have: \[ = \left((\mathbf{a} \cdot \mathbf{c}) \mathbf{b} - (\mathbf{a} \cdot \mathbf{b}) \mathbf{c}\right) + \left((\mathbf{b} \cdot \mathbf{c}) \mathbf{a} - (\mathbf{b} \cdot \mathbf{a}) \mathbf{c}\right) \] This simplifies to: \[ = (\mathbf{a} \cdot \mathbf{c}) \mathbf{b} + (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} - \left((\mathbf{a} \cdot \mathbf{b}) + (\mathbf{b} \cdot \mathbf{a})\right) \mathbf{c} \] 5. **Dot with \((\mathbf{b} + \mathbf{c})\)**: Now, we need to take the dot product of the result with \((\mathbf{b} + \mathbf{c})\): \[ \left((\mathbf{a} \cdot \mathbf{c}) \mathbf{b} + (\mathbf{b} \cdot \mathbf{c}) \mathbf{a} - 2(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}\right) \cdot (\mathbf{b} + \mathbf{c}) \] This expands to: \[ = (\mathbf{a} \cdot \mathbf{c})(\mathbf{b} \cdot \mathbf{b}) + (\mathbf{b} \cdot \mathbf{c})(\mathbf{a} \cdot \mathbf{b}) - 2(\mathbf{a} \cdot \mathbf{b})(\mathbf{c} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c})(\mathbf{c} \cdot \mathbf{c}) \] 6. **Substituting Unit Vector Values**: Since \(\mathbf{b}\) and \(\mathbf{c}\) are unit vectors: \[ \mathbf{b} \cdot \mathbf{b} = 1, \quad \mathbf{c} \cdot \mathbf{c} = 1 \] Thus, we have: \[ = (\mathbf{a} \cdot \mathbf{c}) + (\mathbf{b} \cdot \mathbf{c})(\mathbf{a} \cdot \mathbf{b}) - 2(\mathbf{a} \cdot \mathbf{b})(\mathbf{c} \cdot \mathbf{b}) + (\mathbf{a} \cdot \mathbf{c}) \] 7. **Final Result**: Since the terms involving \(\mathbf{b}\) and \(\mathbf{c}\) are unit vectors and the dot products yield scalar quantities, we find that the entire expression simplifies to zero: \[ = 0 \] ### Conclusion: Thus, the value of the expression is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

If a, b and c are any three vectors, then a times (b times c)=(a times b) times c if and only if

If a, b and c are non-zero vectors such that a times b=c, b times c=a " and "c times a=b then

Unit vectors a, b, c are coplanar. A unit vector d is perpendicular to them. If (a times b) times (c times d)=1/6i-1/3j+1/3k and the angle between a and b is 30^(@) , then c is/are

For any three vectors a,b,c the value of a xx(b xx c)+b xx(c xx a)+c xx(a xx b) is

If vec a, vec b and vec c are non-coplanar vector and vec a times vec c is perpendicular to vec a times(vec b times vec c) ,then the value of [vec a times(vec b times vec c)]times vec c is equal to :

For any non zero vector, a,b,c a*[(b+c)xx(a+b+c)]= . . . .

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)
  1. If a, b, c and d are unit vectors, then abs(a-b)^(2)+abs(b-c)^(2)+abs(...

    Text Solution

    |

  2. Let vec a= vec i- vec k , vec b=x vec i+ vec j+(1-x) vec k and vec c...

    Text Solution

    |

  3. The vectors a=2hati+hatj-2hatk, b=hati+hatj. If c is a vector such tha...

    Text Solution

    |

  4. A tangent is drawn to the curve y=8/x^2 in XY-plane at the point A(x...

    Text Solution

    |

  5. The vectors 3i - 2j + k, i - 3 j + 5k and 2i + j - 4k form the sides o...

    Text Solution

    |

  6. For unit vectors b and c and any non zero vector a, the value of {{(a+...

    Text Solution

    |

  7. Three non-coplanar vector a, b and c are drawn from a common initial p...

    Text Solution

    |

  8. A unit tengent vector at t = 2 on the curve x=t^(2)+2, y=4t^(3)-5,z=2t...

    Text Solution

    |

  9. A particle moves along a curve so that its coordinates at time t are x...

    Text Solution

    |

  10. Consider the parallelopiped wide sides a = 3i + 2j + k, b = I + j + 2k...

    Text Solution

    |

  11. A unit vector n perpendicular to the plane determined by the points A ...

    Text Solution

    |

  12. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  13. If a+b+c=0" and "abs(a)=3, abs(b)=5" and "abs(c)=7 then the angle betw...

    Text Solution

    |

  14. The vector ((i-j) times (j-k)) times (i+5k) is equal to

    Text Solution

    |

  15. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  16. If vec a and vec b are two unit vectors and theta be the angle betwe...

    Text Solution

    |

  17. Vectors i + j + (m + 1) k, i + j + mk and i - j + mk are coplaner for

    Text Solution

    |

  18. If vec a , vec ba n d vec c are non-coplanar unit vectors such tha...

    Text Solution

    |

  19. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  20. Let the volume of parallelopiped whose coteriminous edges are given by...

    Text Solution

    |