Home
Class 12
MATHS
Let the volume of parallelopiped whose c...

Let the volume of parallelopiped whose coteriminous edges are given by `u=i+j+lambdak, v=i+j+3k" and "w=2i+j+k` be 1 `("unit")^(3)`. If `theta` is angle between the edges u and w, then `cos theta` can be

A

`7/(6sqrt(3))`

B

`5/7`

C

`5/(3sqrt(3))`

D

`7/(6sqrt(6))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos \theta \) where \( \theta \) is the angle between the vectors \( \mathbf{u} \) and \( \mathbf{w} \). The volume of the parallelepiped formed by the vectors \( \mathbf{u} \), \( \mathbf{v} \), and \( \mathbf{w} \) is given as 1 cubic unit. ### Step 1: Define the vectors The vectors are defined as: - \( \mathbf{u} = \mathbf{i} + \mathbf{j} + \lambda \mathbf{k} \) - \( \mathbf{v} = \mathbf{i} + \mathbf{j} + 3\mathbf{k} \) - \( \mathbf{w} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} \) ### Step 2: Calculate the scalar triple product The volume \( V \) of the parallelepiped is given by the scalar triple product: \[ V = |\mathbf{u} \cdot (\mathbf{v} \times \mathbf{w})| \] We need to compute \( \mathbf{v} \times \mathbf{w} \). ### Step 3: Compute \( \mathbf{v} \times \mathbf{w} \) Using the determinant form for the cross product: \[ \mathbf{v} \times \mathbf{w} = \begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 1 & 3 \\ 2 & 1 & 1 \end{vmatrix} \] Calculating the determinant: \[ = \mathbf{i} \begin{vmatrix} 1 & 3 \\ 1 & 1 \end{vmatrix} - \mathbf{j} \begin{vmatrix} 1 & 3 \\ 2 & 1 \end{vmatrix} + \mathbf{k} \begin{vmatrix} 1 & 1 \\ 2 & 1 \end{vmatrix} \] Calculating each of these 2x2 determinants: \[ = \mathbf{i} (1 \cdot 1 - 3 \cdot 1) - \mathbf{j} (1 \cdot 1 - 3 \cdot 2) + \mathbf{k} (1 \cdot 1 - 1 \cdot 2) \] \[ = \mathbf{i} (1 - 3) - \mathbf{j} (1 - 6) + \mathbf{k} (1 - 2) \] \[ = -2\mathbf{i} + 5\mathbf{j} - \mathbf{k} \] ### Step 4: Calculate \( \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) \) Now we compute the dot product: \[ \mathbf{u} \cdot (\mathbf{v} \times \mathbf{w}) = (1\mathbf{i} + 1\mathbf{j} + \lambda\mathbf{k}) \cdot (-2\mathbf{i} + 5\mathbf{j} - \mathbf{k}) \] Calculating the dot product: \[ = 1(-2) + 1(5) + \lambda(-1) = -2 + 5 - \lambda = 3 - \lambda \] ### Step 5: Set the volume equal to 1 Since the volume is given as 1: \[ |3 - \lambda| = 1 \] This gives us two equations: 1. \( 3 - \lambda = 1 \) → \( \lambda = 2 \) 2. \( 3 - \lambda = -1 \) → \( \lambda = 4 \) ### Step 6: Find \( \cos \theta \) Now we need to find \( \cos \theta \) between \( \mathbf{u} \) and \( \mathbf{w} \): \[ \mathbf{u} = \mathbf{i} + \mathbf{j} + 2\mathbf{k} \quad (\text{for } \lambda = 2) \] \[ \mathbf{w} = 2\mathbf{i} + \mathbf{j} + \mathbf{k} \] Calculate the dot product: \[ \mathbf{u} \cdot \mathbf{w} = (1)(2) + (1)(1) + (2)(1) = 2 + 1 + 2 = 5 \] ### Step 7: Calculate magnitudes Calculate the magnitudes: \[ |\mathbf{u}| = \sqrt{1^2 + 1^2 + 2^2} = \sqrt{1 + 1 + 4} = \sqrt{6} \] \[ |\mathbf{w}| = \sqrt{2^2 + 1^2 + 1^2} = \sqrt{4 + 1 + 1} = \sqrt{6} \] ### Step 8: Use the dot product to find \( \cos \theta \) Using the formula: \[ \cos \theta = \frac{\mathbf{u} \cdot \mathbf{w}}{|\mathbf{u}| |\mathbf{w}|} = \frac{5}{\sqrt{6} \cdot \sqrt{6}} = \frac{5}{6} \] ### Final Answer Thus, the value of \( \cos \theta \) is \( \frac{5}{6} \).
Promotional Banner

Topper's Solved these Questions

  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Numerical Answer Type Questions)|25 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise EXERCISE (Concept -Based Single Correct Answer Type Questions)|10 Videos
  • VECTOR ALGEBRA

    MCGROW HILL PUBLICATION|Exercise SOLVED EXAMPLES (Level-1 Single Correct Answer Type Questions)|45 Videos
  • TRIGONOMETRICAL IDENTITIES AND EQUATIONS

    MCGROW HILL PUBLICATION|Exercise Questions from Previous Years. B-Architecture Entrance Examination Papers|20 Videos

Similar Questions

Explore conceptually related problems

Let the volume of a parallelopiped whose coterminus edges are given by u = I + j + lambdak, v = I + j + 3k and w = 2i + j + k be 1 cu. unit. If theta be the angle between the edges u and w, then cos theta can be:

if theta angle between two vectors 2i+j+7k and i+5j+k then cos theta

If the volumes of parallelepiped with coterminus edges -pj+5k,i-j+qk and 3i-5j is -8, then

If the volume of a parallelopiped whose coterminus edges are a=i+j+2k, b=2i+ lambda j+k and c=2i+2j+ lambda k is 35 m^3 , then a value of a.b + b.c - c.a is :

Find the volume of the tetrahedron having coterminus edges represented by vectors a=j+k, b=i+k" and "c=i+j .

MCGROW HILL PUBLICATION-VECTOR ALGEBRA-SOLVED EXAMPLES (Level-2 Single Correct Answer Type Questions)
  1. If a, b, c and d are unit vectors, then abs(a-b)^(2)+abs(b-c)^(2)+abs(...

    Text Solution

    |

  2. Let vec a= vec i- vec k , vec b=x vec i+ vec j+(1-x) vec k and vec c...

    Text Solution

    |

  3. The vectors a=2hati+hatj-2hatk, b=hati+hatj. If c is a vector such tha...

    Text Solution

    |

  4. A tangent is drawn to the curve y=8/x^2 in XY-plane at the point A(x...

    Text Solution

    |

  5. The vectors 3i - 2j + k, i - 3 j + 5k and 2i + j - 4k form the sides o...

    Text Solution

    |

  6. For unit vectors b and c and any non zero vector a, the value of {{(a+...

    Text Solution

    |

  7. Three non-coplanar vector a, b and c are drawn from a common initial p...

    Text Solution

    |

  8. A unit tengent vector at t = 2 on the curve x=t^(2)+2, y=4t^(3)-5,z=2t...

    Text Solution

    |

  9. A particle moves along a curve so that its coordinates at time t are x...

    Text Solution

    |

  10. Consider the parallelopiped wide sides a = 3i + 2j + k, b = I + j + 2k...

    Text Solution

    |

  11. A unit vector n perpendicular to the plane determined by the points A ...

    Text Solution

    |

  12. The vector bar(AB)=3hati+4hatk and bar(AC)=5hati-2hatj+4hatk are the s...

    Text Solution

    |

  13. If a+b+c=0" and "abs(a)=3, abs(b)=5" and "abs(c)=7 then the angle betw...

    Text Solution

    |

  14. The vector ((i-j) times (j-k)) times (i+5k) is equal to

    Text Solution

    |

  15. The position vector of a point P is vecr=xhati+yhatj+zhatk where x,y,z...

    Text Solution

    |

  16. If vec a and vec b are two unit vectors and theta be the angle betwe...

    Text Solution

    |

  17. Vectors i + j + (m + 1) k, i + j + mk and i - j + mk are coplaner for

    Text Solution

    |

  18. If vec a , vec ba n d vec c are non-coplanar unit vectors such tha...

    Text Solution

    |

  19. The vector vec a=""alpha hat i+2 hat j+""beta hat k lies in the pl...

    Text Solution

    |

  20. Let the volume of parallelopiped whose coteriminous edges are given by...

    Text Solution

    |