Home
Class 11
MATHS
The value of underset(xrarrpi//4)(lim)(t...

The value of `underset(xrarrpi//4)(lim)(tan^(3)x-tanx)/(cos(x+(pi)/(4)))` is

Text Solution

Verified by Experts

Given, `underset(xto(pi//4))"lim"(tan^(3)x-tanx)/(cos(x+pi/4))`
`=underset(xto(pi)/4)"lim"(tanx(tan^(2)x-1))/(cos(x+pi/4))= underset(xto(pi//4))"lim"tanx.underset(xto(pi//4))"lim"((1-tan^(2)x)/(cos(x+(gpi)/4)))`
`=underset(xto(pi//4))(-1xx"lim")((1+tanx)(1-tanx))/(cos(x+pi/4))` `[therefore a^(2)-b^(2)=(a+b)(a-b)]`
`-underset(xto(pi//4))"lim"(1+tanx) underset(xto(pi//4))"lim"[(cosx-sinx)/(cosx.cos(x+pi/4)]]`
`=-(1+1) xx underset(xto(pi//4))"lim"(sqrt(2)[1/sqrt(2).cosx-1/sqrt(2).sinx])/(cosx.cos(x+pi/4))=-2sqrt(2)underset(xto(pi//4))"lim"[(cospi/4.cosx-sinpi/4.sinx)/(cosx.cos(x+pi/4))]` `[therefore cosA.cosB-sinAsinB=cos(A+B)]`
`=-2sqrt(2)underset(xto(pi//4))"lim"(cos(x+pi/4))/(cos.cos(x+pi/4))=-2sqrt(2)xx1/(1/sqrt(2))=-2sqrt(2)xx sqrt(2)=-4`
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(xrarrpi//4) (tan^(3)x-tanx)/(cos(x+(pi)/(4))) is

The value of lim_(xrarr(5pi)/(4))(cot^(3)x-tanx)/(cos(x+(5pi)/(4))) is equal to

The value of underset(xrarr(3pi)/(4))(lim)(1+root3(tanx))/(1-2cos^(2)x) is

lim_(xto pi/4) (cot^3x-tanx)/(cos(x+pi/4)) is

The value of underset(|x| rarr oo)("lim") cos (tan^(-1) (sin (tan^(-1) x))) is equal to

The value of (lim)_(xvecpi//4)(tan^3x-t a n x)/(cos(x+pi/4)) is 8 b. 4 c. -8 d. -2

The value of lim_(xrarr(3pi)/(4)) (1+root3(tanx))/(1-2cos^(2)x) is

The value of underset(x -> (pi)/(2))(lim) ({1 - tan (x/2)}{1-"sin"x})/({1 + tan (X/2)}(pi - 2x)^(3)) equals

lim_(xrarrpi//2)(cos((pi)/(2)sin^(2)x))/(cot((pi)/(2)sin^(2)x)) equals

The value of lim_(x to (pi)/(4)) ("sin" x - cos x)/((x - (pi)/(4))) equals