Home
Class 11
MATHS
Let f(x) =(kcosx)/(pi-2x) if x!=pi/2 and...

Let `f(x) =(kcosx)/(pi-2x)` if `x!=pi/2` and `f(x)=3` if `x=pi/2`then find the value of `k` if `lim_(x->pi/2) f(x)=f(pi/2)`

Text Solution

AI Generated Solution

To find the value of \( k \) such that \[ \lim_{x \to \frac{\pi}{2}} f(x) = f\left(\frac{\pi}{2}\right), \] we start with the function defined as: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={(1-sin^3x)/(3cos^2x) if x pi/2 find a and b. .

If f(x)=x+sinx , then find the value of int_pi^(2pi)f^(-1)(x)dx .

Knowledge Check

  • The minimum value of f(x)= "sin"x, [(-pi)/(2),(pi)/(2)] is

    A
    0
    B
    1
    C
    -1
    D
    none of the above
  • Similar Questions

    Explore conceptually related problems

    If f'(x) = tan^(-1)(Sec x + tan x), x in (-pi/2 , pi/2) and f(0) = 0 then the value of f(1) is

    Let f(x)={:{((kcosx)/(pi-2x)',xne(pi)/(2)),(3",",x=(pi)/(2).):} If lim_(xto(pi)/(2))f(x)=f((pi)/(2)), find the value of k.

    Let f(x) = x cos^(-1)(-sin|x|) , x in (-pi/2,pi/2)

    If F(x) = {(sin{cosx})/(x-pi/2),x!=pi/2 and 1,x=pi/2, where {.} represents the fractional part function, then lim_(xto pi//2)f(x) is

    Let f(x) = tan x, x in (-pi/2,pi/2)and g(x) = sqrt(1-x^2) then g(f(x)) is

    Let f(x)=|(cos x,e^(x^2) , 2x cos^2x/2),(x^2, sec x, sinx+x^3),(1,2,x+tan x)| then the value of int_(-pi/2)^(pi/2)(x^2+1)(f(x)+f''(x))dx

    If f(x) is a continuous function in [0,pi] such that f(0)=f(x)=0, then the value of int_(0)^(pi//2) {f(2x)-f''(2x)}sin x cos x dx is equal to