Home
Class 11
MATHS
if f(x) = {{:(x+2",",xle-1),(cx^(2)",",x...

if `f(x) = {{:(x+2",",xle-1),(cx^(2)",",xgt-1):},` then find c when `lim(xto-1)f(x)` exists.

Text Solution

AI Generated Solution

To find the value of \( c \) such that the limit \( \lim_{x \to -1} f(x) \) exists, we need to ensure that the left-hand limit and right-hand limit at \( x = -1 \) are equal. Given the function: \[ f(x) = \begin{cases} x + 2 & \text{if } x \leq -1 \\ cx^2 & \text{if } x > -1 ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let f(x)={:{(x+2",",xle-1),(cx^(2)",",xgt-1):} If Lt_(xto-1) f(x) exists, then c is (i) -1 (ii) 1 (iii) 2 (iv) -2

If f(x)={{:(x","" "xlt0),(1","" "x=0),(x^(2)","" "xgt0):}," then find " lim_(xto0) f(x)" if exists.

Let f(x)={{:(5x-4",",0ltxle1),(4x^(3)-3x",",1ltxlt2.):} Find lim_(xto1)f(x).

If f(x)={{:(2x-1,"when "xle0),(x^(2),"when "xgt0):},"then find "f((1)/(2)) and f((-1)/(2))

If f(x)={{:(sinx","" "xnenpi", "ninI),(2","" ""otherwise"):} and g(x)={{:(x^(2)+1","" "xne0", "2),(4","" "x=0),(5","" "x=2):} then find lim_(xto0) g{f(x)} .

Evaluate the left- and right-hand limits of the function defined f(x)={{:(1+x^(2)",if "0lexlt1),(2-x", if" xgt1):}"at "x=1. "Also, show that lim_(xto1) f(x) does not exist.

If f(x) is defined as f(x)={{:(x,0le,xle1),(1,x,=1),(2-x,x,gt1):} then show that lim_(Xrarr1) f(x)=1

Evaluate the left hand and right hand limits of the function defined by f(x)={(1+x^(2)", if "0lexle1),(2-x^(2)", if "xgt1):}" at "x=1 also, show that lim f(x) does not exist.

If f(x)={{:(x^(2),xle0),(x,xgt0):} and g(x)=-absx,x inR, then find fog .

Let f(x) =e^(x-1)-ax^(2)+b and g(x)={{:(e^(x-1),xle1),(x^(2)+1,xgt1):}, then find the values of a and b such that f(x) xx g(x) is differentiable at x=1 .