Home
Class 12
MATHS
Evaluate: int(x^2)/((x^2+a^2)(x^2+b^2))...

Evaluate: `int(x^2)/((x^2+a^2)(x^2+b^2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} \, dx, \] we can use the method of partial fractions. Here’s a step-by-step solution: ### Step 1: Set up the partial fraction decomposition We want to express \[ \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} \] as a sum of simpler fractions. We can write: \[ \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} = \frac{A}{x^2 + a^2} + \frac{B}{x^2 + b^2} \] for some constants \(A\) and \(B\). ### Step 2: Clear the denominators Multiplying both sides by \((x^2 + a^2)(x^2 + b^2)\) gives: \[ x^2 = A(x^2 + b^2) + B(x^2 + a^2). \] ### Step 3: Expand and collect like terms Expanding the right-hand side: \[ x^2 = Ax^2 + Ab^2 + Bx^2 + Ba^2. \] Combining the \(x^2\) terms: \[ x^2 = (A + B)x^2 + (Ab^2 + Ba^2). \] ### Step 4: Set up equations by comparing coefficients Now, we can compare coefficients from both sides: 1. For \(x^2\): \(A + B = 1\) 2. For the constant term: \(Ab^2 + Ba^2 = 0\) ### Step 5: Solve the system of equations From the second equation, we can express \(A\) in terms of \(B\): \[ Ab^2 + Ba^2 = 0 \implies A = -\frac{Ba^2}{b^2}. \] Substituting this into the first equation: \[ -\frac{Ba^2}{b^2} + B = 1 \implies B(b^2 - a^2) = b^2 \implies B = \frac{b^2}{b^2 - a^2}. \] Now substituting \(B\) back to find \(A\): \[ A = 1 - B = 1 - \frac{b^2}{b^2 - a^2} = \frac{-a^2}{b^2 - a^2}. \] ### Step 6: Rewrite the integral Now substituting \(A\) and \(B\) back into the integral: \[ I = \int \left( \frac{-a^2}{b^2 - a^2} \cdot \frac{1}{x^2 + a^2} + \frac{b^2}{b^2 - a^2} \cdot \frac{1}{x^2 + b^2} \right) dx. \] ### Step 7: Integrate each term Now we can integrate each term: \[ I = -\frac{a^2}{b^2 - a^2} \int \frac{1}{x^2 + a^2} \, dx + \frac{b^2}{b^2 - a^2} \int \frac{1}{x^2 + b^2} \, dx. \] Using the formula \[ \int \frac{1}{x^2 + c^2} \, dx = \frac{1}{c} \tan^{-1}\left(\frac{x}{c}\right) + C, \] we have: \[ I = -\frac{a^2}{b^2 - a^2} \cdot \frac{1}{a} \tan^{-1}\left(\frac{x}{a}\right) + \frac{b^2}{b^2 - a^2} \cdot \frac{1}{b} \tan^{-1}\left(\frac{x}{b}\right) + C. \] ### Step 8: Simplify the expression This simplifies to: \[ I = -\frac{a}{b^2 - a^2} \tan^{-1}\left(\frac{x}{a}\right) + \frac{b}{b^2 - a^2} \tan^{-1}\left(\frac{x}{b}\right) + C. \] ### Final Result Thus, the final answer is: \[ I = \frac{b}{b^2 - a^2} \tan^{-1}\left(\frac{x}{b}\right) - \frac{a}{b^2 - a^2} \tan^{-1}\left(\frac{x}{a}\right) + C. \] ---

To evaluate the integral \[ I = \int \frac{x^2}{(x^2 + a^2)(x^2 + b^2)} \, dx, \] we can use the method of partial fractions. Here’s a step-by-step solution: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2)/((a+b x)^2)dx

Evaluate: int(x^2)/((a+b x)^2)\ dx

Evaluate: int(x^2)/((a+b x)^2)\ dx

Evaluate: int(x^2)/(x^4+x^2-2)\ dx

Evaluate: int(x^2)/(x^4+x^2-2)\ dx

Evaluate: int(x^2)/((x-1)(x+1)^2)\ dx

Evaluate: int(x^2+x+1)/(x^2-x)dx