Home
Class 12
MATHS
intsin^(- 1)sqrt(x/(a+x))dx...

`intsin^(- 1)sqrt(x/(a+x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sin^{-1} \left( \sqrt{\frac{x}{a+x}} \right) dx \), we can follow these steps: ### Step 1: Substitution Let’s start by substituting \( x = a \tan^2 \theta \). This means \( dx = 2a \tan \theta \sec^2 \theta \, d\theta \). ### Step 2: Change the Integral Now, substitute \( x \) and \( dx \) in the integral: \[ \int \sin^{-1} \left( \sqrt{\frac{a \tan^2 \theta}{a + a \tan^2 \theta}} \right) \cdot 2a \tan \theta \sec^2 \theta \, d\theta \] ### Step 3: Simplify the Argument of \( \sin^{-1} \) The expression inside the \( \sin^{-1} \) simplifies as follows: \[ \sqrt{\frac{a \tan^2 \theta}{a(1 + \tan^2 \theta)}} = \sqrt{\frac{\tan^2 \theta}{1 + \tan^2 \theta}} = \frac{\tan \theta}{\sec \theta} = \sin \theta \] Thus, we have: \[ \int \sin^{-1}(\sin \theta) \cdot 2a \tan \theta \sec^2 \theta \, d\theta \] ### Step 4: Use the Identity for \( \sin^{-1} \) Since \( \sin^{-1}(\sin \theta) = \theta \) for \( \theta \) in the range \( \left[-\frac{\pi}{2}, \frac{\pi}{2}\right] \), we can rewrite the integral: \[ 2a \int \theta \tan \theta \sec^2 \theta \, d\theta \] ### Step 5: Integration by Parts Let \( u = \theta \) and \( dv = \tan \theta \sec^2 \theta \, d\theta \). Then, \( du = d\theta \) and \( v = \tan^2 \theta / 2 \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] This gives: \[ 2a \left( \frac{\theta \tan^2 \theta}{2} - \int \frac{\tan^2 \theta}{2} \, d\theta \right) \] ### Step 6: Integrate \( \tan^2 \theta \) Recall that \( \tan^2 \theta = \sec^2 \theta - 1 \): \[ \int \tan^2 \theta \, d\theta = \int (\sec^2 \theta - 1) \, d\theta = \tan \theta - \theta \] Thus, \[ \int \tan^2 \theta \, d\theta = \tan \theta - \theta \] ### Step 7: Substitute Back Substituting back, we have: \[ 2a \left( \frac{\theta \tan^2 \theta}{2} - \frac{1}{2} \left( \tan \theta - \theta \right) \right) \] This simplifies to: \[ a \theta \tan^2 \theta - a \left( \tan \theta - \theta \right) \] ### Step 8: Replace \( \theta \) with \( x \) Recall that \( \theta = \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) \) and \( \tan \theta = \sqrt{\frac{x}{a}} \): \[ = a \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) \cdot \frac{x}{a} - a \left( \sqrt{\frac{x}{a}} - \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) \right) + C \] This gives the final result: \[ = x \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) - a \sqrt{\frac{x}{a}} + a \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) + C \] ### Final Answer \[ = x \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) - \sqrt{ax} + a \tan^{-1} \left( \sqrt{\frac{x}{a}} \right) + C \]

To solve the integral \( \int \sin^{-1} \left( \sqrt{\frac{x}{a+x}} \right) dx \), we can follow these steps: ### Step 1: Substitution Let’s start by substituting \( x = a \tan^2 \theta \). This means \( dx = 2a \tan \theta \sec^2 \theta \, d\theta \). ### Step 2: Change the Integral Now, substitute \( x \) and \( dx \) in the integral: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: intsin^(-1)sqrt(x)\ dx

intsin^(-1)((2x)/(1+x^(2)))dx=?

intsin^(-1)((2x)/(1+x^2))dx is e q u a lto

int (x-1)sqrt(x+1)dx

(i) int(1)/(5x+1)dx " "(ii)int(1)/(sqrt(x+1+)sqrt(x))dx

(7) int(1)/(sqrt(x+x sqrt(x)))dx

intsin^2(x+1) dx

intsin^3(2x+1)dx

The value of intsin^(3)x sqrt(cosx)dx is equal to (where, c is the constant of integration)

Differentiate tan^(-1)sqrt (a-x)/sqrt(a+x), -a < x < a