Home
Class 12
MATHS
int(pi//3)^(pi//2) (sqrt(1+cosx))/((1-c...

`int_(pi//3)^(pi//2) (sqrt(1+cosx))/((1-cosx)^(5//2))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1 + \cos x}}{(1 - \cos x)^{\frac{5}{2}}} \, dx, \] we will use trigonometric identities and substitution. ### Step 1: Rewrite the integrand using trigonometric identities We know that \[ \cos x = 1 - 2 \sin^2\left(\frac{x}{2}\right) \quad \text{and} \quad 1 - \cos x = 2 \sin^2\left(\frac{x}{2}\right). \] Thus, we can express \(1 + \cos x\) as: \[ 1 + \cos x = 1 + (1 - 2 \sin^2\left(\frac{x}{2}\right)) = 2 - 2 \sin^2\left(\frac{x}{2}\right) = 2 \cos^2\left(\frac{x}{2}\right). \] Now substituting these into the integral, we have: \[ I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{2 \cos^2\left(\frac{x}{2}\right)}}{(2 \sin^2\left(\frac{x}{2}\right))^{\frac{5}{2}}} \, dx. \] ### Step 2: Simplify the integrand The integral simplifies to: \[ I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{2} \cos\left(\frac{x}{2}\right)}{(2^{\frac{5}{2}} \sin^5\left(\frac{x}{2}\right))} \, dx = \frac{\sqrt{2}}{4\sqrt{2}} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos\left(\frac{x}{2}\right)}{\sin^5\left(\frac{x}{2}\right)} \, dx. \] This simplifies to: \[ I = \frac{1}{4} \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\cos\left(\frac{x}{2}\right)}{\sin^5\left(\frac{x}{2}\right)} \, dx. \] ### Step 3: Substitution Let \(t = \sin\left(\frac{x}{2}\right)\). Then, we have: \[ \frac{dx}{dt} = \frac{2 \cos\left(\frac{x}{2}\right)}{1} \implies dx = \frac{2 \cos\left(\frac{x}{2}\right)}{dt}. \] Now, we need to change the limits of integration: - When \(x = \frac{\pi}{3}\), \(t = \sin\left(\frac{\pi}{6}\right) = \frac{1}{2}\). - When \(x = \frac{\pi}{2}\), \(t = \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}\). Now, substituting into the integral, we have: \[ I = \frac{1}{4} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} \frac{2}{t^5} \, dt = \frac{1}{2} \int_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} t^{-5} \, dt. \] ### Step 4: Integrate The integral of \(t^{-5}\) is: \[ \int t^{-5} \, dt = \frac{t^{-4}}{-4} = -\frac{1}{4t^4}. \] Now, applying the limits: \[ I = \frac{1}{2} \left[-\frac{1}{4t^4}\right]_{\frac{1}{2}}^{\frac{1}{\sqrt{2}}} = \frac{1}{2} \left(-\frac{1}{4\left(\frac{1}{\sqrt{2}}\right)^4} + \frac{1}{4\left(\frac{1}{2}\right)^4}\right). \] Calculating the values: \[ = \frac{1}{2} \left(-\frac{1}{4 \cdot \frac{1}{4}} + \frac{1}{4 \cdot \frac{1}{16}}\right) = \frac{1}{2} \left(-1 + 4\right) = \frac{1}{2} \cdot 3 = \frac{3}{2}. \] ### Final Answer Thus, the value of the integral is: \[ I = \frac{3}{2}. \]

To solve the integral \[ I = \int_{\frac{\pi}{3}}^{\frac{\pi}{2}} \frac{\sqrt{1 + \cos x}}{(1 - \cos x)^{\frac{5}{2}}} \, dx, \] we will use trigonometric identities and substitution. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate the following integral: int_(pi//3)^(pi//2)(sqrt(1+cosx))/((1-cosx)^(3//2))dx

The value of the integral int_(-pi//2)^(pi//2) sqrt(cosx-cos^(2)x)dx is

int_(-pi/2)^(pi/2)cosx dx

Evaluate: int_(-pi//2)^(pi//2) sqrt(cosx-cos^3x) dx

int_0^(pi/2) sqrt(cosx)sinxdx

Evaluate int_(-pi//3)^(pi//3)(sqrt(1+sin2x))/(|cosx|)dx ,

STATEMENT-1 : int_(-3)^(3)|x|dx=9 STATEMENT-2 : int_(0)^(1)tan^(-1)xdx=(pi)/(4)-lnsqrt(2) STATEMENT-3 : int_(0)^(pi//2)(sqrt(cosx))/(sqrt(sinx)+sqrt(cosx))dx=(pi)/(4)

Evaluate int_(pi/3)^(pi/2) e^x((1+sinx)/(1+cosx))dx

Evaluate: int_(-pi//2)^(pi//2)(cosx)/(1+e^x)dx

Evaluate : int_(pi//6)^(pi//3)(sinx+cosx)/(sqrt(sin2x))\ dxdot