Home
Class 12
MATHS
inte^(-3x)cos^3x d x...

`inte^(-3x)cos^3x d x`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int e^{-3x} \cos^3 x \, dx \), we will follow these steps: ### Step 1: Use the identity for \( \cos^3 x \) We can express \( \cos^3 x \) in terms of \( \cos x \) and \( \cos 3x \) using the identity: \[ \cos^3 x = \frac{3 \cos x + \cos 3x}{4} \] Thus, we rewrite the integral: \[ \int e^{-3x} \cos^3 x \, dx = \int e^{-3x} \left( \frac{3 \cos x + \cos 3x}{4} \right) dx \] This simplifies to: \[ \frac{1}{4} \int e^{-3x} (3 \cos x + \cos 3x) \, dx \] ### Step 2: Split the integral We can split the integral into two parts: \[ \frac{1}{4} \left( 3 \int e^{-3x} \cos x \, dx + \int e^{-3x} \cos 3x \, dx \right) \] ### Step 3: Solve \( \int e^{-3x} \cos x \, dx \) Using the formula for the integral of the form \( \int e^{ax} \cos bx \, dx \): \[ \int e^{ax} \cos bx \, dx = \frac{e^{ax}}{a^2 + b^2} (a \cos bx + b \sin bx) \] Here, \( a = -3 \) and \( b = 1 \): \[ \int e^{-3x} \cos x \, dx = \frac{e^{-3x}}{(-3)^2 + 1^2} (-3 \cos x + 1 \sin x) = \frac{e^{-3x}}{9 + 1} (-3 \cos x + \sin x) = \frac{e^{-3x}}{10} (-3 \cos x + \sin x) \] ### Step 4: Solve \( \int e^{-3x} \cos 3x \, dx \) Using the same formula, with \( a = -3 \) and \( b = 3 \): \[ \int e^{-3x} \cos 3x \, dx = \frac{e^{-3x}}{(-3)^2 + 3^2} (-3 \cos 3x + 3 \sin 3x) = \frac{e^{-3x}}{9 + 9} (-3 \cos 3x + 3 \sin 3x) = \frac{e^{-3x}}{18} (-3 \cos 3x + 3 \sin 3x) \] ### Step 5: Combine the results Now we substitute back into our split integral: \[ \frac{1}{4} \left( 3 \cdot \frac{e^{-3x}}{10} (-3 \cos x + \sin x) + \frac{e^{-3x}}{18} (-3 \cos 3x + 3 \sin 3x) \right) \] ### Step 6: Simplify Combining the terms, we have: \[ = \frac{e^{-3x}}{4} \left( \frac{3}{10} (-3 \cos x + \sin x) + \frac{1}{18} (-3 \cos 3x + 3 \sin 3x) \right) \] ### Final Answer Thus, the integral evaluates to: \[ \int e^{-3x} \cos^3 x \, dx = \frac{e^{-3x}}{4} \left( \frac{3}{10} (-3 \cos x + \sin x) + \frac{1}{18} (-3 \cos 3x + 3 \sin 3x) \right) + C \]

To solve the integral \( \int e^{-3x} \cos^3 x \, dx \), we will follow these steps: ### Step 1: Use the identity for \( \cos^3 x \) We can express \( \cos^3 x \) in terms of \( \cos x \) and \( \cos 3x \) using the identity: \[ \cos^3 x = \frac{3 \cos x + \cos 3x}{4} \] Thus, we rewrite the integral: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^(2x)cos(3x+4)\ dx

int e^(3x) " cos 2x dx "

Find: int((tan^(3)x)/(cos^(3)x)) dx

Find: int((tan^(3)x)/(cos^(3)x)) dx

If int e^(3x)cos4xdx=e^(3x)(Asin4x+Bcos4x)+C , then:

Write a value of int(sinx)/(cos^3x)\ dx

int x^(3)cos x*dx

Differentiate e^(3x)cos2x with respect to x :

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

Prove that : int_(0)^(pi//2) (sin x -cos x) log (sin^(3) x + cos^(3)x) dx=0