Home
Class 12
MATHS
intsqrt[tanx].dx...

`intsqrt[tanx].dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \sqrt{\tan x} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{\tan x} \). Then, we have: \[ \tan x = t^2 \] Differentiating both sides with respect to \( x \): \[ \sec^2 x \, dx = 2t \, dt \] Thus, we can express \( dx \) as: \[ dx = \frac{2t}{\sec^2 x} \, dt \] ### Step 2: Express \( \sec^2 x \) in terms of \( t \) Using the identity \( \sec^2 x = 1 + \tan^2 x \): \[ \sec^2 x = 1 + t^4 \] So, substituting this into the expression for \( dx \): \[ dx = \frac{2t}{1 + t^4} \, dt \] ### Step 3: Substitute into the integral Now substituting \( dx \) into the integral: \[ I = \int \sqrt{\tan x} \, dx = \int t \cdot \frac{2t}{1 + t^4} \, dt = \int \frac{2t^2}{1 + t^4} \, dt \] ### Step 4: Split the integral We can rewrite \( 2t^2 \) as \( (t^2 + 1) + (t^2 - 1) \): \[ I = \int \frac{t^2 + 1}{1 + t^4} \, dt + \int \frac{t^2 - 1}{1 + t^4} \, dt \] ### Step 5: Simplify the integrals Now we can separate the two integrals: \[ I = \int \frac{t^2 + 1}{1 + t^4} \, dt + \int \frac{t^2 - 1}{1 + t^4} \, dt \] ### Step 6: Use partial fractions For the first integral: \[ \int \frac{t^2 + 1}{1 + t^4} \, dt = \int \frac{1}{2} \left( \frac{1}{t^2 + 1} + \frac{1}{1 + t^4} \right) dt \] For the second integral: \[ \int \frac{t^2 - 1}{1 + t^4} \, dt = \int \frac{1}{2} \left( \frac{1}{t^2 + 1} - \frac{1}{1 + t^4} \right) dt \] ### Step 7: Integrate each part The integrals can be solved using standard forms: 1. \( \int \frac{1}{t^2 + 1} \, dt = \tan^{-1}(t) \) 2. The integral of \( \frac{1}{1 + t^4} \) can be solved using trigonometric identities or tables. ### Step 8: Back substitution After integrating, substitute back \( t = \sqrt{\tan x} \) to express the final answer in terms of \( x \). ### Final Answer The final expression will involve \( \tan^{-1}(\sqrt{\tan x}) \) and logarithmic terms derived from the integration process.

To solve the integral \( \int \sqrt{\tan x} \, dx \), we will follow these steps: ### Step 1: Substitution Let \( t = \sqrt{\tan x} \). Then, we have: \[ \tan x = t^2 \] Differentiating both sides with respect to \( x \): ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

intsqrt (ax+b)dx

intsqrt(cotx) dx

intsqrt(1+sinx)dx

intsqrt(1+sinx)dx

intsqrt(x^2+4)dx

intsqrt(9-x^2)dx

Evaluate: (i) inttan^5x\ dx (ii) intsqrt(tanx)sec^4x\ dx

intsqrt(secx+1)dx

Evaluate: (i) intsqrt(tanx)(1+tan^2x)\ dx (ii) int{f\ (a x+b)}^nf^(prime)(a x+b)dx ,\ \ n!=-1

intsqrt(x/(1+x))dx