Home
Class 12
MATHS
Evaluate : int0^1xlog(1+2x)dx...

Evaluate : `int_0^1xlog(1+2x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int_0^1 x \log(1 + 2x) \, dx \), we will use integration by parts. ### Step 1: Choose \( u \) and \( dv \) Let's set: - \( u = \log(1 + 2x) \) (which is our logarithmic function) - \( dv = x \, dx \) (which is our algebraic function) ### Step 2: Differentiate \( u \) and integrate \( dv \) Now, we need to find \( du \) and \( v \): - Differentiate \( u \): \[ du = \frac{d}{dx}(\log(1 + 2x)) \, dx = \frac{2}{1 + 2x} \, dx \] - Integrate \( dv \): \[ v = \int x \, dx = \frac{x^2}{2} \] ### Step 3: Apply the integration by parts formula The integration by parts formula is: \[ \int u \, dv = uv - \int v \, du \] Substituting our values: \[ I = \left[ \log(1 + 2x) \cdot \frac{x^2}{2} \right]_0^1 - \int_0^1 \frac{x^2}{2} \cdot \frac{2}{1 + 2x} \, dx \] ### Step 4: Evaluate the boundary term Now calculate the boundary term: \[ \left[ \log(1 + 2x) \cdot \frac{x^2}{2} \right]_0^1 = \left( \log(3) \cdot \frac{1^2}{2} \right) - \left( \log(1) \cdot \frac{0^2}{2} \right) = \frac{1}{2} \log(3) - 0 = \frac{1}{2} \log(3) \] ### Step 5: Simplify the integral Now, we need to simplify the integral: \[ \int_0^1 \frac{x^2}{1 + 2x} \, dx \] We can perform polynomial long division on \( \frac{x^2}{1 + 2x} \): \[ \frac{x^2}{1 + 2x} = \frac{x^2}{2x} - \frac{x}{2(1 + 2x)} = \frac{x}{2} - \frac{x}{2(1 + 2x)} \] Thus, we can rewrite the integral: \[ \int_0^1 \frac{x^2}{1 + 2x} \, dx = \int_0^1 \left( \frac{x}{2} - \frac{x}{2(1 + 2x)} \right) \, dx \] ### Step 6: Evaluate the two integrals 1. The first integral: \[ \int_0^1 \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} \Big|_0^1 = \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{4} \] 2. The second integral: \[ \int_0^1 \frac{x}{2(1 + 2x)} \, dx \] Let \( t = 1 + 2x \), then \( dt = 2 \, dx \) or \( dx = \frac{dt}{2} \). When \( x = 0 \), \( t = 1 \) and when \( x = 1 \), \( t = 3 \): \[ \int_1^3 \frac{(t - 1)}{2t} \cdot \frac{dt}{2} = \frac{1}{4} \int_1^3 \left( 1 - \frac{1}{t} \right) dt = \frac{1}{4} \left[ t - \log(t) \right]_1^3 \] Evaluating gives: \[ = \frac{1}{4} \left( 3 - \log(3) - (1 - 0) \right) = \frac{1}{4} \left( 2 - \log(3) \right) \] ### Step 7: Combine results Now we can combine everything: \[ I = \frac{1}{2} \log(3) - \left( \frac{1}{4} - \frac{1}{4} \left( 2 - \log(3) \right) \right) \] This simplifies to: \[ I = \frac{1}{2} \log(3) - \frac{1}{4} + \frac{1}{4} \left( 2 - \log(3) \right) = \frac{1}{2} \log(3) - \frac{1}{4} + \frac{1}{2} - \frac{1}{4} \log(3) \] Combining like terms gives: \[ I = \frac{1}{4} \log(3) + \frac{1}{4} = \frac{1}{4} (\log(3) + 1) \] ### Final Answer Thus, the final result is: \[ \int_0^1 x \log(1 + 2x) \, dx = \frac{1}{4} (\log(3) + 1) \]

To evaluate the integral \( I = \int_0^1 x \log(1 + 2x) \, dx \), we will use integration by parts. ### Step 1: Choose \( u \) and \( dv \) Let's set: - \( u = \log(1 + 2x) \) (which is our logarithmic function) - \( dv = x \, dx \) (which is our algebraic function) ### Step 2: Differentiate \( u \) and integrate \( dv \) ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int_0^1sqrt(x(1-x))dx

Evaluate: int_0^oolog(x+1/x)(dx)/(1+x^2)

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate: int_0^1x(1-x)^n dx

Evaluate : int_0^1x(1-x)^5dx

Evaluate : int_0^1 1/(1+x^2)dx

Evaluate: int2^(xlog_(2)^(3)) dx

Find the value of int_0^1x(1-x)dx

Evaluate: int_0^1(2x)/(5x^2+1)dx