Home
Class 12
MATHS
int(0)^(pi) x log sinx\ dx...

`int_(0)^(pi) x log sinx\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_{0}^{\pi} x \log(\sin x) \, dx \), we can use a property of definite integrals. Here’s the step-by-step solution: ### Step 1: Apply the Property of Definite Integrals We can use the property that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we have \( a = \pi \) and \( f(x) = x \log(\sin x) \). Therefore: \[ I = \int_{0}^{\pi} x \log(\sin x) \, dx = \int_{0}^{\pi} (\pi - x) \log(\sin(\pi - x)) \, dx \] ### Step 2: Simplify the Integral Using the identity \( \sin(\pi - x) = \sin x \), we can rewrite the integral: \[ I = \int_{0}^{\pi} (\pi - x) \log(\sin x) \, dx \] Now, we can expand this integral: \[ I = \int_{0}^{\pi} \pi \log(\sin x) \, dx - \int_{0}^{\pi} x \log(\sin x) \, dx \] This gives us: \[ I = \pi \int_{0}^{\pi} \log(\sin x) \, dx - I \] ### Step 3: Combine Like Terms Now, we can add \( I \) to both sides: \[ 2I = \pi \int_{0}^{\pi} \log(\sin x) \, dx \] Thus, we can express \( I \) as: \[ I = \frac{\pi}{2} \int_{0}^{\pi} \log(\sin x) \, dx \] ### Step 4: Use a Known Result There is a known result for the integral: \[ \int_{0}^{\pi} \log(\sin x) \, dx = -\pi \log(2) \] Substituting this result into our expression for \( I \): \[ I = \frac{\pi}{2} (-\pi \log(2)) = -\frac{\pi^2}{2} \log(2) \] ### Step 5: Final Result Thus, the value of the integral is: \[ I = -\frac{\pi^2}{2} \log(2) \]

To solve the integral \( I = \int_{0}^{\pi} x \log(\sin x) \, dx \), we can use a property of definite integrals. Here’s the step-by-step solution: ### Step 1: Apply the Property of Definite Integrals We can use the property that states: \[ \int_{0}^{a} f(x) \, dx = \int_{0}^{a} f(a - x) \, dx \] In our case, we have \( a = \pi \) and \( f(x) = x \log(\sin x) \). Therefore: ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Statement-1: int_(0)^(pi//2) x cot x dx=(pi)/(2)log2 Statement-2: int_(0)^(pi//2) log sin x dx=-(pi)/(2)log2

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that int_(0)^(pi//2)log (sinx)dx=int_(0)^(pi//2) log (cosx)dx=-(pi)/(2) log 2 .

Evaluate: int_(0)^((pi)/(2)) log (sin x) dx

The integral int_(0)^(pi) x f(sinx )dx is equal to

The value of int_(0)^(pi//2) (2log sin x-log sin 2x)dx , is

int_(0)^(pi//2) x sinx cos x dx=?

Prove that : int_(0)^(pi//2) x . cot x dx =(pi)/(2)log 2

(i) int_(0)^(pi//2) x cos x dx (i) int_(1)^(3) x. log x dx

The value of int_(0)^(pi/2) log((4+3 sin x)/(4+3 cos x))dx , is