Home
Class 12
MATHS
Prove that int(-pi//4)^(pi//4) log(sinx ...

Prove that `int_(-pi//4)^(pi//4) log(sinx + cosx)\ dx = -pi/4\ log2.`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sin x + \cos x) \, dx = -\frac{\pi}{4} \log 2, \] we will proceed step by step. ### Step 1: Define the Integral Let \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sin x + \cos x) \, dx. \] ### Step 2: Rewrite the Argument of the Logarithm We can multiply and divide the argument of the logarithm by \(\sqrt{2}\): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log\left(\frac{\sqrt{2}}{\sqrt{2}}(\sin x + \cos x)\right) \, dx = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log\left(\sqrt{2} \left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right)\right) \, dx. \] ### Step 3: Simplify the Logarithm Using the property of logarithms \(\log(ab) = \log a + \log b\): \[ I = \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sqrt{2}) \, dx + \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log\left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right) \, dx. \] ### Step 4: Evaluate the First Integral The first integral can be calculated as: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sqrt{2}) \, dx = \log(\sqrt{2}) \cdot \left(\frac{\pi}{4} - \left(-\frac{\pi}{4}\right)\right) = \log(\sqrt{2}) \cdot \frac{\pi}{2} = \frac{\pi}{2} \cdot \frac{1}{2} \log(2) = \frac{\pi}{4} \log(2). \] ### Step 5: Change of Variable for the Second Integral Now we focus on the second integral. Let \(t = x + \frac{\pi}{4}\), then \(dx = dt\). When \(x = -\frac{\pi}{4}\), \(t = 0\) and when \(x = \frac{\pi}{4}\), \(t = \frac{\pi}{2}\). Thus: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log\left(\frac{1}{\sqrt{2}} \sin x + \frac{1}{\sqrt{2}} \cos x\right) \, dx = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{\sqrt{2}} \sin(t - \frac{\pi}{4})\right) \, dt. \] Using the angle subtraction formula: \[ \sin\left(t - \frac{\pi}{4}\right) = \sin t \cos\left(\frac{\pi}{4}\right) - \cos t \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}(\sin t - \cos t). \] Thus, the integral becomes: \[ \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{\sqrt{2}} \cdot \frac{1}{\sqrt{2}}(\sin t - \cos t)\right) \, dt = \int_{0}^{\frac{\pi}{2}} \log\left(\frac{1}{2}(\sin t - \cos t)\right) \, dt. \] ### Step 6: Use Known Result We know that: \[ \int_{0}^{\frac{\pi}{2}} \log(\sin t) \, dt = -\frac{\pi}{2} \log(2). \] Thus, we can conclude: \[ I = \frac{\pi}{4} \log(2) - \frac{\pi}{2} \log(2) = -\frac{\pi}{4} \log(2). \] ### Final Result Therefore, we have proved that: \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sin x + \cos x) \, dx = -\frac{\pi}{4} \log 2. \]

To prove that \[ \int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \log(\sin x + \cos x) \, dx = -\frac{\pi}{4} \log 2, \] we will proceed step by step. ...
Promotional Banner

Topper's Solved these Questions

  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type|12 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • DIFFERENTIAL EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective|1 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int_(-pi//4)^(pi//4)log(sinx+cosx)dx

Evaluate: int_(-pi//2)^(pi//2)log(sinx+cosx)dx

Prove that : int_(pi//4)^(3pi//4) (1)/(1+cos x) dx = 2

Prove that: int_(0)^(pi//2) (sinx)/(sinx +cos x)d dx =(pi)/(4)

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Evaluate: int_(-pi/4)^(npi-pi/4)|sinx+cosx|dx

Prove that: int_(0)^(pi//2) log (sin x) dx =int_(0)^(pi//2) log (cos x) dx =(-pi)/(2) log 2

Prove that : int_(0)^(pi//2)(x)/(sin x +cos x)dx= (pi)/(4sqrt(2)) log |(sqrt(2)+1)/(sqrt(2)-1)|

int_(-pi/2)^(pi/2)cosx dx

show that int_(0)^(pi//2)(sinx-cosx)log(sinx+cosx)dx=0