Home
Class 12
MATHS
If eccentricity of the hyperbola (x^(2))...

If eccentricity of the hyperbola `(x^(2))/(cos^(2) theta)-(y^(2))/(sin^(2) theta)=1` is move than `2` when `theta in (0,(pi)/2)`. Find the possible values of length of latus rectum (a) `(3,oo)` (b) `1,3//2)` (c) `(2,3)` (d) `(-3,-2)`

A

(2,3)

B

`(3, oo)`

C

`(3//2, 2)`

D

`(1, 3//2)`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the given hyperbola and its properties step by step. ### Step 1: Identify the equation of the hyperbola The given equation of the hyperbola is: \[ \frac{x^2}{\cos^2 \theta} - \frac{y^2}{\sin^2 \theta} = 1 \] Here, we can identify \( a^2 = \cos^2 \theta \) and \( b^2 = \sin^2 \theta \). ### Step 2: Find the eccentricity of the hyperbola The eccentricity \( e \) of a hyperbola is given by the formula: \[ e = \sqrt{1 + \frac{b^2}{a^2}} \] Substituting the values of \( a^2 \) and \( b^2 \): \[ e = \sqrt{1 + \frac{\sin^2 \theta}{\cos^2 \theta}} = \sqrt{1 + \tan^2 \theta} \] Using the identity \( 1 + \tan^2 \theta = \sec^2 \theta \): \[ e = \sec \theta \] ### Step 3: Set up the inequality for eccentricity According to the problem, the eccentricity is more than 2: \[ e > 2 \implies \sec \theta > 2 \] This implies: \[ \cos \theta < \frac{1}{2} \] ### Step 4: Determine the range of \( \theta \) The condition \( \cos \theta < \frac{1}{2} \) corresponds to the angles: \[ \theta \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \] ### Step 5: Calculate the length of the latus rectum The length of the latus rectum \( L \) of a hyperbola is given by: \[ L = \frac{2b^2}{a} \] Substituting \( a = \cos \theta \) and \( b = \sin \theta \): \[ L = \frac{2 \sin^2 \theta}{\cos \theta} \] This can be rewritten using the identity \( \sin^2 \theta = 1 - \cos^2 \theta \): \[ L = 2 \frac{\sin^2 \theta}{\cos \theta} = 2 \tan \theta \sin \theta \] ### Step 6: Analyze the expression for \( L \) Using the interval \( \theta \in \left(\frac{\pi}{3}, \frac{\pi}{2}\right) \): - At \( \theta = \frac{\pi}{3} \): \[ L = 2 \tan\left(\frac{\pi}{3}\right) \sin\left(\frac{\pi}{3}\right) = 2 \cdot \sqrt{3} \cdot \frac{\sqrt{3}}{2} = 3 \] - As \( \theta \) approaches \( \frac{\pi}{2} \), \( \tan \theta \) approaches infinity, thus \( L \) approaches infinity. ### Conclusion The possible values of the length of the latus rectum \( L \) are: \[ L \in (3, \infty) \] Thus, the correct answer is: **(a) (3, ∞)**
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Matching coluumn type|1 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Integer Answer type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6 (Ellipse)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

If eccentricity of the hyperbola (x^(2))/(cos^(2) theta)-(y^(2))/(sin^(2) theta)=1 is more than 2 when theta in (0,(pi)/2) . Find the possible values of length of latus rectum (a) (3,oo) (b) 1,3//2) (c) (2,3) (d) (-3,-2)

If the eccentricity of the hyperbola (x^(2))/((1+sin theta)^(2))-(y^(2))/(cos^(2)theta)=1 is (2)/(sqrt3) , then the sum of all the possible values of theta is (where, theta in (0, pi) )

If e is the eccentricity of the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 and theta is the angle between the asymptotes, then cos.(theta)/(2) is equal to

If cos theta= -1/2 and pi < theta < (3pi)/2 then find the value of 4tan^2 theta- 3cosec^2 theta

If (3sin2theta)/(1-cos2theta)=1/2 and 0^(@)letheta180^(@) , then theta =

If (cos^(3) theta )/( (1- sin theta ))+( sin^(3) theta )/( (1+ cos theta ))=1+ cos theta , then number of possible values of theta is ( where theta in [0,2pi] )

If costheta=1/2 and pi< theta < (3pi)/2 , find the value of 4tan^2theta-3cos e c^2thetadot

If theta=sin^(-1){sin (-600^(o) ) } , then one of the possible values of theta is pi/3 (b) pi/2 (c) (2pi)/3 (d) (-2pi)/3

Evaluate (cos3 theta-2cos 4theta)/(sin 3 theta+2sin 4theta), when theta=150^(@) .

If tan theta=-3/4 and pi/2 < theta < pi, find the values of sin theta,cos theta and cot theta .