Home
Class 12
MATHS
Let S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(...

Let `S={(x,y) in R^(2):(y^(2))/(1+r)-(x^(2))/(1-r)=1}`, where `r ne pm 1`. Then S represents:

A

A hyperbolawhose eccentricity is `(2)/(sqrt(r+1))`, where `0 lt r lt 1`.

B

An ellipse whose eccentricity is `(1)/(sqrt(r+1)), " where" r gt 1`

C

A hyperbola whose eccentricity is `(2)/(sqrt(1-r)), " where " 0 lt r lt 1`.

D

An ellipse whose eccentricity is `sqrt((2)/(r+1)), " where " r gt 1`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to analyze the equation given in the set \( S \): \[ \frac{y^2}{1 + r} - \frac{x^2}{1 - r} = 1 \] where \( r \neq \pm 1 \). ### Step 1: Analyze the equation for \( r > 1 \) 1. **Rewrite the equation**: When \( r > 1 \), \( 1 - r < 0 \). We can rewrite the equation as: \[ \frac{y^2}{1 + r} + \frac{x^2}{r - 1} = 1 \] This is the standard form of the equation of an ellipse. 2. **Identify parameters**: Here, we can identify: - \( a^2 = r - 1 \) - \( b^2 = 1 + r \) 3. **Calculate eccentricity**: The eccentricity \( E \) of an ellipse is given by: \[ E = \sqrt{1 - \frac{a^2}{b^2}} = \sqrt{1 - \frac{r - 1}{1 + r}} \] Simplifying this gives: \[ E = \sqrt{\frac{(1 + r) - (r - 1)}{1 + r}} = \sqrt{\frac{2}{1 + r}} \] ### Step 2: Analyze the equation for \( 0 < r < 1 \) 1. **Rewrite the equation**: When \( 0 < r < 1 \), \( 1 - r > 0 \). The equation can be rewritten as: \[ \frac{y^2}{1 + r} - \frac{x^2}{1 - r} = 1 \] This is the standard form of the equation of a hyperbola. 2. **Identify parameters**: Here, we can identify: - \( a^2 = 1 - r \) - \( b^2 = 1 + r \) 3. **Calculate eccentricity**: The eccentricity \( E \) of a hyperbola is given by: \[ E = \sqrt{1 + \frac{a^2}{b^2}} = \sqrt{1 + \frac{1 - r}{1 + r}} \] Simplifying this gives: \[ E = \sqrt{\frac{(1 + r) + (1 - r)}{1 + r}} = \sqrt{\frac{2}{1 + r}} \] ### Conclusion From the analysis, we conclude that: - For \( r > 1 \), the set \( S \) represents an ellipse with eccentricity \( E = \sqrt{\frac{2}{1 + r}} \). - For \( 0 < r < 1 \), the set \( S \) represents a hyperbola with eccentricity \( E = \sqrt{\frac{2}{1 + r}} \). ### Final Answer Thus, the correct representation of \( S \) is: - An ellipse for \( r > 1 \) - A hyperbola for \( 0 < r < 1 \)
Promotional Banner

Topper's Solved these Questions

  • JEE 2019

    CENGAGE ENGLISH|Exercise Matching coluumn type|1 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Integer Answer type|2 Videos
  • JEE 2019

    CENGAGE ENGLISH|Exercise Chapter 6 (Ellipse)|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    CENGAGE ENGLISH|Exercise Archives (Numerical Value type)|2 Videos
  • LIMITS

    CENGAGE ENGLISH|Exercise Comprehension Type|4 Videos

Similar Questions

Explore conceptually related problems

Let A={x in R :-1lt=xlt=1}=B and C={x in R : xgeq0} and let S={(x ,\ y) in AxxB : x^2+y^2=1} and S_0={(x ,\ y) in AxxC : x^2+y^2=1}dot Then S defines a function from A to B (b) S_0 defines a function from A to C (c) S_0 defines a function from A to B (d) S defines a function from A to C

Let P={(x,y)|x^(2)+y^(2)=1,x,yinR} . Then, R, is

The operation & is defined as r & s =(s^(2)-r^(2))/(r+s) where r and s are real number and r ne -s . What is the value of 3 & 4?

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

"If "y^(1//m)=(x+sqrt(1+x^(2)))," then "(1+x^(2))y_(2)+xy_(1) is (where y_(r) represents the rth derivative of y w.r.t. x)

The equation (x^2)/(1-r)-(y^2)/(1+r)=1,r >1, represents (a)an ellipse (b) a hyperbola (c)a circle (d) none of these

int"x"^(-2//3)(1+"x"^(1//2))^(-5//3)dx=p(1+x^(1//2))^(r/s),w h e r er ,s"" are co-prime to each other. Then a. r=1 b. r=2 c. p=3 d. s=3

x^2/(r^2+r-6)+y^2/(r^2-6r+5)=1 will represent the ellipse if r lies in the interval

Let f(x)={(x^4-5x^2+4)/(|(x-1)(x-2)| , x!=1,2 & 6, x=1 & 12 , x = 2 then f(x) is continuous on the set (a) R (b) R-{1} (c) R-{2} (d) R-{1,2}

If (p+iq)/(r+is) = x + iy , prove that (p-iq)/(r-is) = x -iy and (p^(2)+q^(2))/(r^(2)+s^(2))=x^(2)+y^(2) ,where p,q,r,s,x,y,inR