Home
Class 12
MATHS
If x=log(2a) a,y=log(3a) 2a and z=log(4...

If `x=log_(2a) a,y=log_(3a) 2a ` and `z=log_(4a) 3a` then prove that `xyz+1=2yz`

Text Solution

AI Generated Solution

To prove that \( xyz + 1 = 2yz \) given \( x = \log_{2a} a \), \( y = \log_{3a} 2a \), and \( z = \log_{4a} 3a \), we will start by calculating each logarithm and then substituting them into the left-hand side (LHS) of the equation. ### Step 1: Calculate \( x \) We start with: \[ x = \log_{2a} a \] Using the change of base formula, we can rewrite this as: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.38|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.39|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise ILLUSTRATION 1.36|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If x=(log)_(2a)a , y=(log)_(3a)2a ,z=(log)_(4a)3a ,p rov et h a t1+x y z=2y zdot

If log_(a) 3 = 2 and log_(b) 8 = 3," then prove that "log_(a) b= log_(3) 4 .

If f(x)=log_(e)x, then prove that :f(xyz)=f(x)+f(y)+f(z)

If log_(1/3) |z+1| > log_(1/3) |z-1| then prove that Re(z) < 0.

If y= 2^((1)/(log_(x)4)) then prove that x=y^(2) .

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If x=1+log_(a) bc, y=1+log_(b) ca, z=1+log_(c) ab , then (xyz)/(xy+yz+zx) is equal to

If y = a^(1/(1-log_(a) x)) and z = a^(1/(1-log_(a)y))",then prove that "x=a^(1/(1-log_(a)z))

If log_(2) x xx log_(3) x = log_(2) x + log_(3) x , then find x .

If log_(4)10=x,log_(2)20=y andlog_(5)8=z .prove that 1/(x+1)+1/(y+1)+1/(z+1)=1.