Home
Class 12
MATHS
If a ge b gt 1, then find the largest p...

If ` a ge b gt 1`, then find the largest possible value of the expression ` log_(a)(a//b)+log_(a)(b//a)`.

Text Solution

AI Generated Solution

To solve the expression \( \log_a\left(\frac{a}{b}\right) + \log_a\left(\frac{b}{a}\right) \), we will use the properties of logarithms step by step. ### Step 1: Rewrite the logarithmic expressions We can use the property of logarithms that states \( \log_b\left(\frac{m}{n}\right) = \log_b(m) - \log_b(n) \). Thus, we can rewrite the given expression as: \[ \log_a\left(\frac{a}{b}\right) = \log_a(a) - \log_a(b) \] ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Example 1.4|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Example 1.5|1 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Example 1.2|1 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If ageqb >1, then find the largest possible value of the expression (log)_a(a/b)+(log)_b(b/a)dot

If log_(sqrt8) b = 3 1/3 , then find the value of b.

If log_(b) n = 2 and log_(n) 2b = 2 , then find the value of b.

If (log)_2(a+b)+(log)_2(c+d)geq4. Then find the minimum value of the expression a+b+c+d

Find the values of the following: a) 30((log_(43) (43))/30) b) (1/2)^(log_(2)5)

If (log)_2(a+b)+(log)_2(c+d)geq4. Then find the minimum value of the expression a+b+c+ddot

Show that : log_(a)m div log_(ab)m = 1 + log_(a)b

Let a and b be real numbers greater than 1 for which there exists a positive real number c, different from 1, such that 2(log_a c +log_b c)=9log_ab c . Find the largest possible value of log_a b .

If a > 1, b > 1, then the minimum value of log_b a + log_a b is

Evaluate: log_(a^2) b-:log_sqrt(a)(b)^2