Home
Class 12
MATHS
Prove that log(7) log(7)sqrt(7sqrt((7sq...

Prove that ` log_(7) log_(7)sqrt(7sqrt((7sqrt7))) = 1-3 log_(7) 2`.

Text Solution

Verified by Experts

`log_(7) log_(7) sqrt(7sqrt((7sqrt7))) = log_(7) log_(7) 7^(1/2+1/4+1/8)`
` = log_(7) (1/2+1/4+1/8)`
` = log_(7) (7/8)`
` = 1- log_(7) 8`
` = 1-3 log_(7) 2`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

log_7log_7sqrt(7(sqrt(7sqrt(7))))=

log_(7)9=

If log_(7)log_(7) sqrt(7sqrt(7sqrt(7)))=1-a log_(7)2 and log_(15)log_(15) sqrt(15sqrt(15sqrt(15sqrt(15))))=1-b log_(15)2 , then a+b=

Log_(7)5=

(3-sqrt7)(3+sqrt7)=?

Solve : log_7log_5 (sqrt(x+5)+sqrt(x))=0

(sqrt(7)+2sqrt(3))(sqrt(7)-2sqrt(3))

Prove that (1)/(sqrt(7))=(1)/(sqrt(7))times(sqrt(7))/(sqrt(7))

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5

Compute the following 56+(log)_(sqrt(2))4/(sqrt(7)+sqrt(3))+(log)_(1//2)1/(10+2sqrt(21))