Home
Class 12
MATHS
Find the value of (4/(log(2)(2sqrt3))+2...

Find the value of ` (4/(log_(2)(2sqrt3))+2/(log_(3) (2sqrt3)))^(2)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \left( \frac{4}{\log_2(2\sqrt{3})} + \frac{2}{\log_3(2\sqrt{3})} \right)^2 \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula. Using the property of logarithms, we can express \( \log_a(b) \) as \( \frac{\log(b)}{\log(a)} \). Therefore, we have: \[ \log_2(2\sqrt{3}) = \frac{\log(2\sqrt{3})}{\log(2)} \quad \text{and} \quad \log_3(2\sqrt{3}) = \frac{\log(2\sqrt{3})}{\log(3)} \] ### Step 2: Substitute these into the expression. Now substituting these into our expression gives: \[ \frac{4}{\log_2(2\sqrt{3})} = \frac{4 \log(2)}{\log(2\sqrt{3})} \quad \text{and} \quad \frac{2}{\log_3(2\sqrt{3})} = \frac{2 \log(3)}{\log(2\sqrt{3})} \] So the expression becomes: \[ \left( \frac{4 \log(2)}{\log(2\sqrt{3})} + \frac{2 \log(3)}{\log(2\sqrt{3})} \right)^2 \] ### Step 3: Combine the fractions. We can combine the terms in the parentheses: \[ = \left( \frac{4 \log(2) + 2 \log(3)}{\log(2\sqrt{3})} \right)^2 \] ### Step 4: Factor out common terms. Notice that we can factor out a 2 from the numerator: \[ = \left( \frac{2(2 \log(2) + \log(3))}{\log(2\sqrt{3})} \right)^2 \] ### Step 5: Simplify the logarithm in the denominator. Now, we simplify \( \log(2\sqrt{3}) \): \[ \log(2\sqrt{3}) = \log(2) + \log(\sqrt{3}) = \log(2) + \frac{1}{2} \log(3) \] ### Step 6: Substitute back into the expression. Now substituting this back gives: \[ = \left( \frac{2(2 \log(2) + \log(3))}{\log(2) + \frac{1}{2} \log(3)} \right)^2 \] ### Step 7: Evaluate the expression. Let \( x = \log(2) \) and \( y = \log(3) \). Then we have: \[ = \left( \frac{2(2x + y)}{x + \frac{1}{2}y} \right)^2 \] ### Step 8: Simplify further. Now, let's simplify the fraction: \[ = \left( \frac{2(2x + y)}{x + \frac{1}{2}y} \right)^2 = \left( \frac{4x + 2y}{x + \frac{1}{2}y} \right)^2 \] ### Step 9: Final simplification. Now we can evaluate this expression. The numerator is \( 4x + 2y \) and the denominator is \( x + \frac{1}{2}y \). ### Final Answer: After evaluating, we find that: \[ = 16 \] Thus, the final value of the expression is \( 16 \). ---

To solve the expression \( \left( \frac{4}{\log_2(2\sqrt{3})} + \frac{2}{\log_3(2\sqrt{3})} \right)^2 \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula. Using the property of logarithms, we can express \( \log_a(b) \) as \( \frac{\log(b)}{\log(a)} \). Therefore, we have: \[ \log_2(2\sqrt{3}) = \frac{\log(2\sqrt{3})}{\log(2)} \quad \text{and} \quad \log_3(2\sqrt{3}) = \frac{\log(2\sqrt{3})}{\log(3)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of (log)_(2sqrt(3))1728.

Find the value of (log)_(2sqrt(3))1728.

Find the value of log_(2sqrt3) 1728 .

Find the value of sqrt((log_(0.5)4)^(2)) .

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .

Find the value of the following log_((5+2sqrt6)) (5-2sqrt6)

log_(3sqrt(2))324

Find the value of (log)_2(2 9 3-2)+(log)_2(12 3 3+4+4 9 3)dot

The value of ((log_(2)9)^(2))^(1/(log_(2)(log_(2)9)))xx(sqrt7)^(1/(log_(4)7)) is ________.