Home
Class 12
MATHS
If log(2) x xx log(3) x = log(2) x + ...

If ` log_(2) x xx log_(3) x = log_(2) x + log_(3) x`, then find x .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_2 x \cdot \log_3 x = \log_2 x + \log_3 x \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms as: \[ \log_2 x = \frac{\log x}{\log 2} \quad \text{and} \quad \log_3 x = \frac{\log x}{\log 3} \] Substituting these into the equation gives: \[ \frac{\log x}{\log 2} \cdot \frac{\log x}{\log 3} = \frac{\log x}{\log 2} + \frac{\log x}{\log 3} \] ### Step 2: Simplify the equation This simplifies to: \[ \frac{(\log x)^2}{\log 2 \cdot \log 3} = \frac{\log x}{\log 2} + \frac{\log x}{\log 3} \] We can multiply both sides by \( \log 2 \cdot \log 3 \) to eliminate the denominators: \[ (\log x)^2 = \log x \cdot \log 3 + \log x \cdot \log 2 \] ### Step 3: Factor out \( \log x \) Rearranging gives: \[ (\log x)^2 - \log x \cdot (\log 2 + \log 3) = 0 \] Factoring out \( \log x \): \[ \log x \left( \log x - (\log 2 + \log 3) \right) = 0 \] ### Step 4: Set each factor to zero This gives us two cases to consider: 1. \( \log x = 0 \) 2. \( \log x - (\log 2 + \log 3) = 0 \) ### Step 5: Solve the first case For the first case: \[ \log x = 0 \implies x = 10^0 = 1 \] ### Step 6: Solve the second case For the second case: \[ \log x = \log 2 + \log 3 \implies \log x = \log(2 \cdot 3) = \log 6 \implies x = 6 \] ### Conclusion Thus, the solutions are: \[ x = 1 \quad \text{and} \quad x = 6 \]

To solve the equation \( \log_2 x \cdot \log_3 x = \log_2 x + \log_3 x \), we will follow these steps: ### Step 1: Rewrite the logarithms using the change of base formula Using the change of base formula, we can express the logarithms as: \[ \log_2 x = \frac{\log x}{\log 2} \quad \text{and} \quad \log_3 x = \frac{\log x}{\log 3} \] Substituting these into the equation gives: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If log_(2)x + log_(2)x=7 , then =

If sum log_(2)x+log_(4) x + log_(16) x + log_(256) x + …=6, then find the value of x.

If "log"_(3) x xx "log"_(x) 2x xx "log"_(2x)y ="log"_(x) x^(2) , then y equals

Find x if log_(2) log_(1//2) log_(3) x gt 0

Given x = log_(10)12, y = log_(4)2 xx log_(10)9 and z = log_(10) 0.4 , find : (i) x - y - z (ii) 13^(x - y - z)

If (log_(3)x)(log_(5)3)=3 , find x.

If log_(2)(x + y) = log_(3)(x - y) = (log 25)/(log 0.2) , find the values of x and y.

If log_(sqrt(27))x = 2 (2)/(3) , find x.

Statement - 1 : If x gt 1 then log_(10)x lt log_(3)x lt log_(e )x lt log_(2)x . Statement - 2 : If 0 lt x lt 1 , then log_(x)a gt log_(x)b implies a lt b .