Home
Class 12
MATHS
If y^2=x za n da^x=b^y=c^z , then prove ...

If `y^2=x za n da^x=b^y=c^z ,` then prove that `(log)_6a=(log)_c bdot`

Text Solution

Verified by Experts

`a^(x) = b^(y) = c^(z)`
` rArr x log a = y log b = z log c`
` :. y/x = z/y rArr(log a)/(log b) = (log b)/(log c)`
` rArr log_(b) a = log_(c) b`
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If y^2=x z and a^x=b^y=c^z , then prove that (log)_ab=(log)_bc

If x, y, z are in G.P. and a^x=b^y=c^z , then (a) logba=log_ac (b) log_cb =log_ac (c) log_ba=log_cb (d) none of these

If a^x=b^y=c^z=d^w then log_a(bcd)=

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If y=a^x^a^x^...^(((((oo))))) , then prove that (dy)/(dx)=(y^2(log)_e y)/(x(1-y(log)_e x(log)_e y)

If a^x=b^y=c^z\ a n d\ b^2=a c , prove that y=(2x z)/(x+z)

If a^x=b ,\ b^y=c\ a n d\ c^z=a , prove that x y z=1

If y=a^(x^(a^x..oo)) then prove that dy/dx=(y^2 log y )/(x(1-y log x log y))

If y log x= x-y , prove that (dy)/(dx)= (log x)/((1+log x)^(2))

If a^x=b , b^y=c ,c^z=a and x=(log)_b a^2; y=(log)_c b^3& z=(log)_a c^k , where a,b, c >0 & a , b , c!=1 then k is equal to a. 1/5 b. 1/6 c. (log)_(64)2 d. (log)_(32)2