Home
Class 12
MATHS
Compute log(ab)(root(3)a//sqrtb)" if " ...

Compute ` log_(ab)(root(3)a//sqrtb)" if " log_(ab) a = 4`.

Text Solution

AI Generated Solution

The correct Answer is:
To compute \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) given that \( \log_{ab} a = 4 \), we will follow these steps: ### Step 1: Rewrite the logarithm using the change of base formula Using the change of base formula, we can express \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) as: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \frac{\log_a\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right)}{\log_a(ab)} \] ### Step 2: Simplify the logarithm in the numerator Now, we can simplify the numerator: \[ \log_a\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \log_a\left(\sqrt[3]{a}\right) - \log_a\left(\sqrt{b}\right) \] Using the property \( \log_a(m^n) = n \cdot \log_a(m) \): \[ = \frac{1}{3} \log_a(a) - \frac{1}{2} \log_a(b) \] Since \( \log_a(a) = 1 \): \[ = \frac{1}{3} - \frac{1}{2} \log_a(b) \] ### Step 3: Simplify the denominator Next, we simplify the denominator: \[ \log_a(ab) = \log_a(a) + \log_a(b) = 1 + \log_a(b) \] ### Step 4: Substitute back into the logarithm expression Now substituting back into our expression: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \frac{\frac{1}{3} - \frac{1}{2} \log_a(b)}{1 + \log_a(b)} \] ### Step 5: Use the given information We know that \( \log_{ab} a = 4 \). Using the change of base formula again: \[ \log_{ab} a = \frac{\log_a a}{\log_a(ab)} = \frac{1}{1 + \log_a(b)} = 4 \] This implies: \[ 1 = 4(1 + \log_a(b)) \implies 1 = 4 + 4\log_a(b) \implies 4\log_a(b) = 1 - 4 = -3 \implies \log_a(b) = -\frac{3}{4} \] ### Step 6: Substitute \( \log_a(b) \) into the expression Now substituting \( \log_a(b) = -\frac{3}{4} \) into our expression: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \frac{\frac{1}{3} - \frac{1}{2}\left(-\frac{3}{4}\right)}{1 + \left(-\frac{3}{4}\right)} \] Calculating the numerator: \[ = \frac{\frac{1}{3} + \frac{3}{8}}{1 - \frac{3}{4}} = \frac{\frac{1}{3} + \frac{3}{8}}{\frac{1}{4}} \] ### Step 7: Find a common denominator for the numerator Finding a common denominator for \( \frac{1}{3} \) and \( \frac{3}{8} \): \[ \frac{1}{3} = \frac{8}{24}, \quad \frac{3}{8} = \frac{9}{24} \implies \frac{8 + 9}{24} = \frac{17}{24} \] Thus, the expression becomes: \[ \frac{\frac{17}{24}}{\frac{1}{4}} = \frac{17}{24} \cdot 4 = \frac{17}{6} \] ### Final Answer Therefore, the value of \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) is: \[ \boxed{\frac{17}{6}} \]

To compute \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) given that \( \log_{ab} a = 4 \), we will follow these steps: ### Step 1: Rewrite the logarithm using the change of base formula Using the change of base formula, we can express \( \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) \) as: \[ \log_{ab}\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right) = \frac{\log_a\left(\frac{\sqrt[3]{a}}{\sqrt{b}}\right)}{\log_a(ab)} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

log_(3)root(9)(3)=

Show that : log_(a)m div log_(ab)m = 1 + log_(a)b

Prove the following identities: (a) (log_(a) n)/(log_(ab) n) = 1+ log_(a) b" "(b) log_(ab) x = (log_(a) x log_(b) x)/(log_(a) x + log_(b) x) .

If log_a(ab)=x then log_b(ab) is equals to

Express log_(10) root(5)(108) in term of log_(10)2 and log_(10)3 .

the number of roots of the equation log_(3sqrtx) x + log_(3x) (sqrtx) =0 is

Find the value of log_(2) (2root(3)9-2) + log_(2)(12root(3)3+4+4root(3)9) .

If x ="log"_(a)(bc), y ="log"_(b)(ca) " and "z = "log"_(c)(ab), then which of the following is correct?

If a, b, c are positive real numbers, then (1)/("log"_(ab)abc) + (1)/("log"_(bc)abc) + (1)/("log"_(ca)abc) =

log (log_(ab) a +(1)/(log_(b)ab) is (where ab ne 1)