Home
Class 12
MATHS
Find the value of (1/49)^(1+log(7)2) +...

Find the value of ` (1/49)^(1+log_(7)2) + 5^(-log_((1//5))(7)`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \left(\frac{1}{49}\right)^{1 + \log_{7}2} + 5^{-\log_{(1/5)}(7)} \), we will follow these steps: ### Step 1: Rewrite \( \frac{1}{49} \) We know that \( 49 = 7^2 \), so we can rewrite \( \frac{1}{49} \) as: \[ \frac{1}{49} = \frac{1}{7^2} = 7^{-2} \] Thus, we have: \[ \left(\frac{1}{49}\right)^{1 + \log_{7}2} = (7^{-2})^{1 + \log_{7}2} \] ### Step 2: Apply the power of a power property Using the property of exponents \( (a^m)^n = a^{m \cdot n} \), we can simplify: \[ (7^{-2})^{1 + \log_{7}2} = 7^{-2(1 + \log_{7}2)} = 7^{-2 - 2\log_{7}2} \] ### Step 3: Rewrite \( -2\log_{7}2 \) Using the property \( a \log_{b}c = \log_{b}(c^a) \), we can rewrite \( -2\log_{7}2 \) as: \[ -2\log_{7}2 = \log_{7}(2^{-2}) = \log_{7}\left(\frac{1}{4}\right) \] Thus, we have: \[ 7^{-2 - 2\log_{7}2} = 7^{-2 + \log_{7}\left(\frac{1}{4}\right)} = 7^{\log_{7}\left(\frac{1}{4}\right) / 7^2} \] ### Step 4: Combine the terms Now, we can write: \[ 7^{-2 + \log_{7}\left(\frac{1}{4}\right)} = \frac{1}{7^2} \cdot \frac{1}{4} = \frac{1}{49} \cdot \frac{1}{4} = \frac{1}{196} \] ### Step 5: Simplify the second term \( 5^{-\log_{(1/5)}(7)} \) Using the change of base formula for logarithms, we can rewrite: \[ -\log_{(1/5)}(7) = -\frac{\log_{10}(7)}{\log_{10}(1/5)} = -\frac{\log_{10}(7)}{-\log_{10}(5)} = \frac{\log_{10}(7)}{\log_{10}(5)} = \log_{5}(7) \] Thus, we have: \[ 5^{-\log_{(1/5)}(7)} = 5^{\log_{5}(7)} = 7 \] ### Step 6: Combine both parts Now we combine both parts: \[ \frac{1}{196} + 7 \] To add these, we need a common denominator: \[ 7 = \frac{7 \cdot 196}{196} = \frac{1372}{196} \] Thus, we have: \[ \frac{1}{196} + \frac{1372}{196} = \frac{1373}{196} \] ### Final Answer The final value of the expression is: \[ \frac{1373}{196} \]

To solve the expression \( \left(\frac{1}{49}\right)^{1 + \log_{7}2} + 5^{-\log_{(1/5)}(7)} \), we will follow these steps: ### Step 1: Rewrite \( \frac{1}{49} \) We know that \( 49 = 7^2 \), so we can rewrite \( \frac{1}{49} \) as: \[ \frac{1}{49} = \frac{1}{7^2} = 7^{-2} \] Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.4|12 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.5|13 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.2|9 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

Find the value of (1/(49))^(1+(log)_7 2)+5^(-1(log)_((1/5))(7))

Find the value of 49^((1-log_7(2)))+5^(-log_5(4) is

Find the value of : log_(0.2) 5

Find the value of log_(2) (1/(7^(log_(7) 0.125))) .

Let M denote antilog ""_(32) 0.6 and N denote the value of 49^((1-log_(7)2))+5^(-log_(5)4) . Then M.N is :

Log_(7)5=

Find the value of (i) (log_(10)5)(log_(10)20)+(log_(10)2)^(2) (ii) root3(5^((1)/(log_(7)5))+(1)/((-log_(10)0.1))) (iii) log_(0.75)log_(2)sqrtsqrt((1)/(0.125)) (iv)5^(log_(sqrt(5))2)+9^(log_(3)7)-8^(log_(2)5) (v)((1)/(49))^(1+log_(7)2)+5^(-log_(1//5)7) (vi) 7^(log_(3)5)+3^(log_(5)7)-5^(log_(3)7)-7^(log_(5)3)

Find the value of log_(5) log_(2)log_(3) log_(2) 512 .

Find the value of 7 log(16/15) + 5 log (25/24) + 3 log (81/80) .

Find the value of the following: (i) log_(10) 2 + log_(10) 5 (ii) log_(3) (sqrt(11)-sqrt2) + log_(3) (sqrt11+sqrt2) (iii) log_(7) 35 - log_(7) 5