Home
Class 12
MATHS
Given that log(2)=0. 3010 , the number ...

Given that `log(2)=0. 3010 ,` the number of digits in the number `2000^(2000)` is 6601 (b) 6602 (c) 6603 (d) 6604

A

6601

B

6602

C

6603

D

6604

Text Solution

AI Generated Solution

The correct Answer is:
To find the number of digits in the number \( 2000^{2000} \), we can use the formula for the number of digits \( d \) of a number \( n \), which is given by: \[ d = \lfloor \log_{10} n \rfloor + 1 \] ### Step-by-step Solution: 1. **Identify the number**: We have \( n = 2000^{2000} \). 2. **Take the logarithm**: We need to find \( \log_{10}(2000^{2000}) \). Using the property of logarithms \( \log(a^b) = b \cdot \log(a) \): \[ \log_{10}(2000^{2000}) = 2000 \cdot \log_{10}(2000) \] 3. **Break down \( 2000 \)**: We can express \( 2000 \) as \( 2000 = 2 \times 10^3 \). Therefore, we can write: \[ \log_{10}(2000) = \log_{10}(2 \times 10^3) = \log_{10}(2) + \log_{10}(10^3) \] Using the property \( \log(a \cdot b) = \log(a) + \log(b) \) and knowing that \( \log_{10}(10^3) = 3 \): \[ \log_{10}(2000) = \log_{10}(2) + 3 \] 4. **Substituting the known value**: We are given \( \log_{10}(2) = 0.3010 \): \[ \log_{10}(2000) = 0.3010 + 3 = 3.3010 \] 5. **Calculate \( \log_{10}(2000^{2000}) \)**: Now substituting back: \[ \log_{10}(2000^{2000}) = 2000 \cdot 3.3010 = 6602 \] 6. **Find the number of digits**: Using the formula for the number of digits: \[ d = \lfloor 6602 \rfloor + 1 = 6602 + 1 = 6603 \] ### Final Answer: The number of digits in \( 2000^{2000} \) is \( 6603 \).

To find the number of digits in the number \( 2000^{2000} \), we can use the formula for the number of digits \( d \) of a number \( n \), which is given by: \[ d = \lfloor \log_{10} n \rfloor + 1 \] ### Step-by-step Solution: ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If the sum of digits of the number N = 2000^11 -2011 is S, then

If log2=0. 30101 ,\ log3=0. 47712 , then the number of digits in 6^(20) is 15 b. 16 c. 17 d. 18

If log2=0.301 and log3=0.477 , find the number of digits in: (3^15xx2^10)

Write the number of significant digits in the following (a) 1001 (b)100.1 (c) 100.10 (d) 0.001001

If log_(10) 2 = 0.3010 and log_(10) 3 = 0.477 , then find the number of digits in the following numbers: (a) 3^(40)" "(b) 2^(32) xx 5^(25)" (c) 24^(24)

Given ,log2=0.301 and log3=0.477, then the number of digits before decimal in 3^12times2^8 is

The total number of 4 digit numbers is (a) 8999 (b) 9000 (c) 8000 (d) 9999

the digit at the units place of the number (32)^32= (A) 0 (B) 2 (C) 4 (D) 6

If x % of 2000=600, then x= (a) 60 (b) 30 (c) 40 (d) 50

If log_(2)(log_(2)(log_(2)x))=2 , then the number of digits in x, is (log_(10)2=0.3010)

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Exercises (Single Correct Answer Type)
  1. log(4) 18 is

    Text Solution

    |

  2. The number N = 6 log(10) 2+ log(10) 31 lies between two successive in...

    Text Solution

    |

  3. Given that log(2)=0. 3010 , the number of digits in the number 2000^(...

    Text Solution

    |

  4. If (21. 4)^a=(0. 00214)^b=100 , then the value of 1/a-1/b is 0 (b) 1 ...

    Text Solution

    |

  5. The value of log ab- log|b|=

    Text Solution

    |

  6. If a, b, c are consecutive positive integers and log (1+ac) = 2K, then...

    Text Solution

    |

  7. if (a+log4 3)/(a+log2 3)= (a+log8 3)/(a+log4 3)=b then find the value ...

    Text Solution

    |

  8. If p >1a n dq >1 are such that log(p+q)=logp+logq , then the value of ...

    Text Solution

    |

  9. The value of (1+2(log3 2)/((1+(log)3 2)^2)+((log)6 2)^2 is 2 (b) 3 (...

    Text Solution

    |

  10. If (log)4 5=aa n d(log)5 6=b , then (log)3 2 is equal to 1/(2a+1) (b)...

    Text Solution

    |

  11. If log(10) 2 = a, log(10)3 = b" then "log(0.72)(9.6) in terms of a an...

    Text Solution

    |

  12. There exists a natural number N which is 50 times its own logarithm to...

    Text Solution

    |

  13. The value of ((log)2 24)/((log)(96)2)-((log)2 192)/((log)(12)2) is 3 (...

    Text Solution

    |

  14. log(x-1)x*log(x-2)(x-1)*...*log(x-12)(x-11) = 2,x is equal to

    Text Solution

    |

  15. If f.(x)= log((1+x)/(1-x)), then

    Text Solution

    |

  16. If a^4b^5=1 then the value of loga(a^5b^4) equals

    Text Solution

    |

  17. The value of 3^((log)4 5)-5^((log)4 3) is 0 (b) 1 (c) 2 (d) none of...

    Text Solution

    |

  18. If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1), then the value of (log 3 - l...

    Text Solution

    |

  19. The value of x satisfying sqrt3^(-4+2log(sqrt5)x)= 1//9 is

    Text Solution

    |

  20. The value of x satisfying the equation root(3)(5)^(log(5)5^(log(5)5^...

    Text Solution

    |