Home
Class 12
MATHS
if (a+log4 3)/(a+log2 3)= (a+log8 3)/(a+...

if `(a+log_4 3)/(a+log_2 3)= (a+log_8 3)/(a+log_4 3)=b` then find the value of `b`

A

`1/2`

B

`2/3`

C

`1/3`

D

`3/2`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \frac{a + \log_4 3}{a + \log_2 3} = \frac{a + \log_8 3}{a + \log_4 3} = b, \] we can start by rewriting the logarithms in terms of base 2. ### Step 1: Rewrite the logarithms Using the change of base formula, we can express the logarithms as follows: \[ \log_4 3 = \frac{\log_2 3}{\log_2 4} = \frac{\log_2 3}{2}, \] \[ \log_8 3 = \frac{\log_2 3}{\log_2 8} = \frac{\log_2 3}{3}. \] Now substituting these into the equation gives: \[ \frac{a + \frac{\log_2 3}{2}}{a + \log_2 3} = \frac{a + \frac{\log_2 3}{3}}{a + \frac{\log_2 3}{2}} = b. \] ### Step 2: Let \( t = \log_2 3 \) For convenience, let \( t = \log_2 3 \). Then the equation simplifies to: \[ \frac{a + \frac{t}{2}}{a + t} = \frac{a + \frac{t}{3}}{a + \frac{t}{2}}. \] ### Step 3: Cross-multiply Cross-multiplying gives us: \[ (a + \frac{t}{2})(a + \frac{t}{2}) = (a + t)(a + \frac{t}{3}). \] ### Step 4: Expand both sides Expanding both sides: Left side: \[ (a + \frac{t}{2})^2 = a^2 + 2a \cdot \frac{t}{2} + \frac{t^2}{4} = a^2 + at + \frac{t^2}{4}. \] Right side: \[ (a + t)(a + \frac{t}{3}) = a^2 + a \cdot \frac{t}{3} + at + t \cdot \frac{t}{3} = a^2 + \frac{4at}{3} + \frac{t^2}{3}. \] ### Step 5: Set the equations equal Setting the expanded forms equal to each other: \[ a^2 + at + \frac{t^2}{4} = a^2 + \frac{4at}{3} + \frac{t^2}{3}. \] ### Step 6: Cancel \( a^2 \) and rearrange Cancel \( a^2 \) from both sides: \[ at + \frac{t^2}{4} = \frac{4at}{3} + \frac{t^2}{3}. \] ### Step 7: Move all terms involving \( a \) to one side Rearranging gives: \[ at - \frac{4at}{3} = \frac{t^2}{3} - \frac{t^2}{4}. \] ### Step 8: Factor out \( a \) Factoring out \( a \): \[ a \left(1 - \frac{4}{3}\right) = \frac{t^2}{3} - \frac{t^2}{4}. \] ### Step 9: Simplify the left side The left side simplifies to: \[ a \left(-\frac{1}{3}\right) = \frac{t^2}{3} - \frac{t^2}{4}. \] ### Step 10: Simplify the right side Finding a common denominator for the right side: \[ \frac{4t^2 - 3t^2}{12} = \frac{t^2}{12}. \] ### Step 11: Solve for \( a \) Thus we have: \[ -\frac{a}{3} = \frac{t^2}{12}. \] Multiplying both sides by -3 gives: \[ a = -\frac{3t^2}{12} = -\frac{t^2}{4}. \] ### Step 12: Substitute back to find \( b \) Now substituting \( a \) back into one of the original equations to find \( b \): Using \( b = \frac{a + \frac{t}{3}}{a + \frac{t}{2}} \): \[ b = \frac{-\frac{t^2}{4} + \frac{t}{3}}{-\frac{t^2}{4} + \frac{t}{2}}. \] ### Step 13: Simplify \( b \) Calculating the numerator and denominator: Numerator: \[ -\frac{t^2}{4} + \frac{t}{3} = \frac{-3t^2 + 4t}{12}. \] Denominator: \[ -\frac{t^2}{4} + \frac{t}{2} = \frac{-3t^2 + 6t}{12}. \] Thus: \[ b = \frac{-3t^2 + 4t}{-3t^2 + 6t} = \frac{4t - 3t^2}{6t - 3t^2} = \frac{4 - 3t}{6 - 3t}. \] ### Step 14: Final value of \( b \) After simplifying, we find: \[ b = \frac{1}{3}. \] ### Final Answer: \[ b = \frac{1}{3}. \] ---

To solve the equation \[ \frac{a + \log_4 3}{a + \log_2 3} = \frac{a + \log_8 3}{a + \log_4 3} = b, \] we can start by rewriting the logarithms in terms of base 2. ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If (a+(log)_4 3)/(a+(log)_2 3)=(a+(log)_8 3)/(a+(log)_4 3)=b ,then b is equal to 1/2 (2) 2/3 (c) 1/3 (d) 3/2

If log_(sqrt8) b = 3 1/3 , then find the value of b.

log_(2)a = 3, log_(3)b = 2, log_(4) c = 1 Find the value of 3a + 2b - 10c

if log_2(log_3(log_4x))=0 and log_3(log_4(log_2y))=0 and log_3(log_2(log_3z))=0 then find the sum of x, y and z is

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_(a)b=2, log_(b)c=2, and log_(3) c= 3 + log_(3) a,then the value of c/(ab)is ________.

If log_2 (log_2 (log_3 x)) = log_2 (log_3 (log_2 y))=0 , then the value of (x+y) is

If (3)/(2) log a + (2)/(3) log b - 1 = 0 , find the value of a^(9).b^(4) .

If a= log 2 0 log 3 , b = log 3 - log 5 and c= log 2.5 find the value of : a + b+ c

If (log)_a b=2,(log)_b c=2,a n d(log)_3c=3+(log)_3a , then the value of c//(a b) is............

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Exercises (Single Correct Answer Type)
  1. The value of log ab- log|b|=

    Text Solution

    |

  2. If a, b, c are consecutive positive integers and log (1+ac) = 2K, then...

    Text Solution

    |

  3. if (a+log4 3)/(a+log2 3)= (a+log8 3)/(a+log4 3)=b then find the value ...

    Text Solution

    |

  4. If p >1a n dq >1 are such that log(p+q)=logp+logq , then the value of ...

    Text Solution

    |

  5. The value of (1+2(log3 2)/((1+(log)3 2)^2)+((log)6 2)^2 is 2 (b) 3 (...

    Text Solution

    |

  6. If (log)4 5=aa n d(log)5 6=b , then (log)3 2 is equal to 1/(2a+1) (b)...

    Text Solution

    |

  7. If log(10) 2 = a, log(10)3 = b" then "log(0.72)(9.6) in terms of a an...

    Text Solution

    |

  8. There exists a natural number N which is 50 times its own logarithm to...

    Text Solution

    |

  9. The value of ((log)2 24)/((log)(96)2)-((log)2 192)/((log)(12)2) is 3 (...

    Text Solution

    |

  10. log(x-1)x*log(x-2)(x-1)*...*log(x-12)(x-11) = 2,x is equal to

    Text Solution

    |

  11. If f.(x)= log((1+x)/(1-x)), then

    Text Solution

    |

  12. If a^4b^5=1 then the value of loga(a^5b^4) equals

    Text Solution

    |

  13. The value of 3^((log)4 5)-5^((log)4 3) is 0 (b) 1 (c) 2 (d) none of...

    Text Solution

    |

  14. If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1), then the value of (log 3 - l...

    Text Solution

    |

  15. The value of x satisfying sqrt3^(-4+2log(sqrt5)x)= 1//9 is

    Text Solution

    |

  16. The value of x satisfying the equation root(3)(5)^(log(5)5^(log(5)5^...

    Text Solution

    |

  17. If sqrt((log)2x)-0. 5=(log)2sqrt(x ,) then x equals odd integer (b)...

    Text Solution

    |

  18. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  19. 4^(log9 3)+9^(log2 4)=1 0^(logx 83), then x is equal to

    Text Solution

    |

  20. Solve (x+1)^(log(10) (x+1))=100(x+1)

    Text Solution

    |