Home
Class 12
MATHS
The value of ((log)2 24)/((log)(96)2)-((...

The value of `((log)_2 24)/((log)_(96)2)-((log)_2 192)/((log)_(12)2)` is 3 (b) 0 (c) 2 (d) 1

A

3

B

0

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \(\frac{\log_2 24}{\log_{96} 2} - \frac{\log_2 192}{\log_{12} 2}\), we will convert all logarithms to base 2 using the change of base formula. ### Step-by-step Solution: 1. **Convert the logarithms using the change of base formula**: \[ \log_{b} a = \frac{\log_k a}{\log_k b} \] Hence, we can rewrite the expression as: \[ \frac{\log_2 24}{\log_{96} 2} = \frac{\log_2 24}{\frac{1}{\log_2 96}} = \log_2 24 \cdot \log_2 96 \] and \[ \frac{\log_2 192}{\log_{12} 2} = \frac{\log_2 192}{\frac{1}{\log_2 12}} = \log_2 192 \cdot \log_2 12 \] Thus, the expression becomes: \[ \log_2 24 \cdot \log_2 96 - \log_2 192 \cdot \log_2 12 \] 2. **Express the numbers in terms of logarithms**: - We can express \(24\), \(96\), \(192\), and \(12\) in terms of their prime factors: - \(24 = 2^3 \cdot 3\) - \(96 = 2^5 \cdot 3\) - \(192 = 2^6 \cdot 3\) - \(12 = 2^2 \cdot 3\) 3. **Calculate the logarithms**: - Using the property \(\log_b (mn) = \log_b m + \log_b n\): \[ \log_2 24 = \log_2 (2^3 \cdot 3) = 3 + \log_2 3 \] \[ \log_2 96 = \log_2 (2^5 \cdot 3) = 5 + \log_2 3 \] \[ \log_2 192 = \log_2 (2^6 \cdot 3) = 6 + \log_2 3 \] \[ \log_2 12 = \log_2 (2^2 \cdot 3) = 2 + \log_2 3 \] 4. **Substitute back into the expression**: \[ = (3 + \log_2 3)(5 + \log_2 3) - (6 + \log_2 3)(2 + \log_2 3) \] 5. **Expand both products**: \[ = (15 + 8\log_2 3 + \log_2^2 3) - (12 + 8\log_2 3 + \log_2^2 3) \] 6. **Simplify the expression**: \[ = 15 - 12 + 8\log_2 3 - 8\log_2 3 + \log_2^2 3 - \log_2^2 3 \] \[ = 3 \] ### Final Answer: Thus, the value of the expression is \(3\).

To solve the expression \(\frac{\log_2 24}{\log_{96} 2} - \frac{\log_2 192}{\log_{12} 2}\), we will convert all logarithms to base 2 using the change of base formula. ### Step-by-step Solution: 1. **Convert the logarithms using the change of base formula**: \[ \log_{b} a = \frac{\log_k a}{\log_k b} \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

The value of (1+2(log)_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

The value of (1+2(log_3 2)/((1+(log)_3 2)^2)+((log)_6 2)^2 is 2 (b) 3 (c) 4 (d) 1

int_2^4((log)_x2-(((log)_2 2)^2)/(ln2))dx= 0 (b) 1 (c) 2 (d) 4

The sum of the series: 1/((log)_2 4)+1/((log)_4 4)+1/((log)_8 4)++1/((log)_(2n)4) is (n(n+1))/2 (b) (n(n+1)(2n+1))/(12) (c) (n(n+1))/4 (d) none of these

The value of 2^("log"_(3)7) - 7^("log"_(3)2) is

The value of "log"_(2)"log"_(2)"log"_(4) 256 + 2 "log"_(sqrt(2))2 , is

If a ,b ,c ,d in R^+-{1}, then the minimum value of (log)_d a+(log)_b d+(log)_a c+(log)_c b is (a) 4 (b) 2 (c) 1 (d)none of these

Number of real values of x satisfying the equation (log)_2(x^2-x)(log)_2((x-1)/x)+((log)_2x)^2=4,i s 0 (b) 2 (c) 3 (d) 7

If 3^x=4^(x-1) , then x= (2(log)_3 2)/(2(log)_3 2-1) (b) 2/(2-(log)_2 3) 1/(1-(log)_4 3) (d) (2(log)_2 3)/(2(log)_2 3-1)

Find the value of (log)_2(2 9 3-2)+(log)_2(12 3 3+4+4 9 3)dot

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Exercises (Single Correct Answer Type)
  1. If log(10) 2 = a, log(10)3 = b" then "log(0.72)(9.6) in terms of a an...

    Text Solution

    |

  2. There exists a natural number N which is 50 times its own logarithm to...

    Text Solution

    |

  3. The value of ((log)2 24)/((log)(96)2)-((log)2 192)/((log)(12)2) is 3 (...

    Text Solution

    |

  4. log(x-1)x*log(x-2)(x-1)*...*log(x-12)(x-11) = 2,x is equal to

    Text Solution

    |

  5. If f.(x)= log((1+x)/(1-x)), then

    Text Solution

    |

  6. If a^4b^5=1 then the value of loga(a^5b^4) equals

    Text Solution

    |

  7. The value of 3^((log)4 5)-5^((log)4 3) is 0 (b) 1 (c) 2 (d) none of...

    Text Solution

    |

  8. If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1), then the value of (log 3 - l...

    Text Solution

    |

  9. The value of x satisfying sqrt3^(-4+2log(sqrt5)x)= 1//9 is

    Text Solution

    |

  10. The value of x satisfying the equation root(3)(5)^(log(5)5^(log(5)5^...

    Text Solution

    |

  11. If sqrt((log)2x)-0. 5=(log)2sqrt(x ,) then x equals odd integer (b)...

    Text Solution

    |

  12. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  13. 4^(log9 3)+9^(log2 4)=1 0^(logx 83), then x is equal to

    Text Solution

    |

  14. Solve (x+1)^(log(10) (x+1))=100(x+1)

    Text Solution

    |

  15. If log2x+logx2=10/3=log2y+logy2 and x!=y ,then x+y=

    Text Solution

    |

  16. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  17. If (log)3{5+4(log)3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (...

    Text Solution

    |

  18. If 2x^(log(4)3)+3^(log(4)x)= 27, then x is equal to

    Text Solution

    |

  19. The equation log4(2-x)+log(0.25)(2+x)=log4(1-x)+log(0.25)(2x+1) has

    Text Solution

    |

  20. The values of b for which the equation 2log(1/25)(bx+28)=1log5(12-4x-x...

    Text Solution

    |