Home
Class 12
MATHS
If f.(x)= log((1+x)/(1-x)), then...

If ` f.(x)= log((1+x)/(1-x))`, then

A

`f(x_(1))*f(x_(2))=f(x_(1)+x_(2))`

B

`f(x+2)-2f(x+1)+f(x)=0`

C

`f(x)+f(x+1)=f(x^(2)+x)`

D

`f(x_(1))+f(x_(2)) = f ((x_(1)+x_(2))/(1+x_(1)x_(2)))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem where \( f(x) = \log\left(\frac{1+x}{1-x}\right) \), we need to show that: \[ f(x_1) + f(x_2) = f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) \] ### Step 1: Write down the expressions for \( f(x_1) \) and \( f(x_2) \) We start with the definitions of \( f(x_1) \) and \( f(x_2) \): \[ f(x_1) = \log\left(\frac{1+x_1}{1-x_1}\right) \] \[ f(x_2) = \log\left(\frac{1+x_2}{1-x_2}\right) \] ### Step 2: Add \( f(x_1) \) and \( f(x_2) \) Using the property of logarithms that states \( \log(a) + \log(b) = \log(ab) \), we can combine these two logarithms: \[ f(x_1) + f(x_2) = \log\left(\frac{1+x_1}{1-x_1}\right) + \log\left(\frac{1+x_2}{1-x_2}\right) = \log\left(\left(\frac{1+x_1}{1-x_1}\right) \cdot \left(\frac{1+x_2}{1-x_2}\right)\right) \] ### Step 3: Simplify the expression inside the logarithm Now, we need to simplify the product: \[ \frac{(1+x_1)(1+x_2)}{(1-x_1)(1-x_2)} \] Expanding both the numerator and the denominator: - **Numerator**: \[ (1+x_1)(1+x_2) = 1 + x_1 + x_2 + x_1 x_2 \] - **Denominator**: \[ (1-x_1)(1-x_2) = 1 - x_1 - x_2 + x_1 x_2 \] Thus, we have: \[ f(x_1) + f(x_2) = \log\left(\frac{1 + x_1 + x_2 + x_1 x_2}{1 - x_1 - x_2 + x_1 x_2}\right) \] ### Step 4: Relate this to \( f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) \) Now we need to calculate \( f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) \): \[ f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) = \log\left(\frac{1 + \frac{x_1 + x_2}{1 + x_1 x_2}}{1 - \frac{x_1 + x_2}{1 + x_1 x_2}}\right) \] Simplifying the fractions: - **Numerator**: \[ 1 + \frac{x_1 + x_2}{1 + x_1 x_2} = \frac{(1 + x_1 x_2) + (x_1 + x_2)}{1 + x_1 x_2} = \frac{1 + x_1 + x_2 + x_1 x_2}{1 + x_1 x_2} \] - **Denominator**: \[ 1 - \frac{x_1 + x_2}{1 + x_1 x_2} = \frac{(1 + x_1 x_2) - (x_1 + x_2)}{1 + x_1 x_2} = \frac{1 - x_1 - x_2 + x_1 x_2}{1 + x_1 x_2} \] Thus, we have: \[ f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) = \log\left(\frac{1 + x_1 + x_2 + x_1 x_2}{1 - x_1 - x_2 + x_1 x_2}\right) \] ### Conclusion Since both expressions for \( f(x_1) + f(x_2) \) and \( f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) \) are equal, we conclude that: \[ f(x_1) + f(x_2) = f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) \]

To solve the problem where \( f(x) = \log\left(\frac{1+x}{1-x}\right) \), we need to show that: \[ f(x_1) + f(x_2) = f\left(\frac{x_1 + x_2}{1 + x_1 x_2}\right) \] ### Step 1: Write down the expressions for \( f(x_1) \) and \( f(x_2) \) ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If f(x) = log ((1+x)/(1-x)) , where -1 lt x lt 1 then f((3x+x^(3))/(1+3x^(2))) - f((2x)/(1+x^(2))) is equal to

If f(x)=log((1+x)/(1-x)),t h e n (a) f(x_1)f(x_2)=f(x_1+x_2) (b) f(x+2)-2f(x+1)+f(x)=0 (c) f(x)+f(x+1)=f(x^2+x) (d) f(x_1)+f(x_2)=f((x_1+x_2)/(1+x_1x_2))

If f(x)=log((1+x)/(1-x))a n dt h e nf((2x)/(1+x^2)) is equal to {f(x)}^2 (b) {f(x)}^3 (c) 2 f(x) (d) 3f(x)

If f(x)=log((1-x)/(1+x)) , show that f(a)+f(b)=f((a+b)/(1+ab))

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x)=log((1+x)/(1-x))a n dg(x)=((3x+x^3)/(1+3x^2)) , then f(g(x)) is equal to (a) f(3x) (b) {f(x)}^3 (c) 3f(x) (d) -f(x)

If f(x)=log_e((1-x)/(1+x)); prove that f(a)+f(b)=f((a+b)/(1+a b))

The function f(x)=log_(10)((1+x)/(1-x)) satisfies the equation

The function f(x)=log_(10)((1+x)/(1-x)) satisfies the equation

Given f(x)=log_(10)((1+x)/(1-x)) and g(x)=(3x+x^(3))/(1+3x^(2)) , then fog(x) equals

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Exercises (Single Correct Answer Type)
  1. The value of ((log)2 24)/((log)(96)2)-((log)2 192)/((log)(12)2) is 3 (...

    Text Solution

    |

  2. log(x-1)x*log(x-2)(x-1)*...*log(x-12)(x-11) = 2,x is equal to

    Text Solution

    |

  3. If f.(x)= log((1+x)/(1-x)), then

    Text Solution

    |

  4. If a^4b^5=1 then the value of loga(a^5b^4) equals

    Text Solution

    |

  5. The value of 3^((log)4 5)-5^((log)4 3) is 0 (b) 1 (c) 2 (d) none of...

    Text Solution

    |

  6. If 2^(x+y) = 6^(y) and 3^(x-1) = 2^(y+1), then the value of (log 3 - l...

    Text Solution

    |

  7. The value of x satisfying sqrt3^(-4+2log(sqrt5)x)= 1//9 is

    Text Solution

    |

  8. The value of x satisfying the equation root(3)(5)^(log(5)5^(log(5)5^...

    Text Solution

    |

  9. If sqrt((log)2x)-0. 5=(log)2sqrt(x ,) then x equals odd integer (b)...

    Text Solution

    |

  10. If log(y) x + log(x) y = 2, x^(2)+y = 12 , then the value of xy is

    Text Solution

    |

  11. 4^(log9 3)+9^(log2 4)=1 0^(logx 83), then x is equal to

    Text Solution

    |

  12. Solve (x+1)^(log(10) (x+1))=100(x+1)

    Text Solution

    |

  13. If log2x+logx2=10/3=log2y+logy2 and x!=y ,then x+y=

    Text Solution

    |

  14. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  15. If (log)3{5+4(log)3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (...

    Text Solution

    |

  16. If 2x^(log(4)3)+3^(log(4)x)= 27, then x is equal to

    Text Solution

    |

  17. The equation log4(2-x)+log(0.25)(2+x)=log4(1-x)+log(0.25)(2x+1) has

    Text Solution

    |

  18. The values of b for which the equation 2log(1/25)(bx+28)=1log5(12-4x-x...

    Text Solution

    |

  19. If the equation 2^x(1-2^x)+4^y=2^y is solved for y in terms of x where...

    Text Solution

    |

  20. The number of solution of x^(log(x)(x+3)^(2)) = 16is

    Text Solution

    |