Home
Class 12
MATHS
If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1...

If `(log)_(10)[1/(2^x+x-1)]=x[(log)_(10)5-1]` , then `x=` 4 (b) 3 (c) 2 (d) 1

A

4

B

3

C

2

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \log_{10}\left(\frac{1}{2^x + x - 1}\right) = x(\log_{10} 5 - 1) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation We start with the equation: \[ \log_{10}\left(\frac{1}{2^x + x - 1}\right) = x(\log_{10} 5 - 1) \] ### Step 2: Use the property of logarithms Using the property of logarithms that states \( \log_{10}(a/b) = \log_{10} a - \log_{10} b \), we can rewrite the left side: \[ \log_{10}(1) - \log_{10}(2^x + x - 1) = x(\log_{10} 5 - 1) \] Since \( \log_{10}(1) = 0 \), we have: \[ -\log_{10}(2^x + x - 1) = x(\log_{10} 5 - 1) \] ### Step 3: Multiply both sides by -1 This gives us: \[ \log_{10}(2^x + x - 1) = -x(\log_{10} 5 - 1) \] ### Step 4: Exponentiate both sides Exponentiating both sides to eliminate the logarithm: \[ 2^x + x - 1 = 10^{-x(\log_{10} 5 - 1)} \] ### Step 5: Simplify the right side The right side can be simplified using the property \( 10^{\log_{10} a} = a \): \[ 2^x + x - 1 = \frac{10^{-x}}{5^{-x}} = \frac{1}{5^x} \] ### Step 6: Rearranging the equation Rearranging gives us: \[ 2^x + x - 1 - \frac{1}{5^x} = 0 \] ### Step 7: Testing integer values for x Now we will test integer values for \( x \) from the options given (1, 2, 3, 4): 1. **For \( x = 1 \)**: \[ 2^1 + 1 - 1 - \frac{1}{5^1} = 2 + 1 - 1 - \frac{1}{5} = 2 - \frac{1}{5} = \frac{10}{5} - \frac{1}{5} = \frac{9}{5} \neq 0 \] 2. **For \( x = 2 \)**: \[ 2^2 + 2 - 1 - \frac{1}{5^2} = 4 + 2 - 1 - \frac{1}{25} = 5 - \frac{1}{25} = \frac{125}{25} - \frac{1}{25} = \frac{124}{25} \neq 0 \] 3. **For \( x = 3 \)**: \[ 2^3 + 3 - 1 - \frac{1}{5^3} = 8 + 3 - 1 - \frac{1}{125} = 10 - \frac{1}{125} = \frac{1250}{125} - \frac{1}{125} = \frac{1249}{125} \neq 0 \] 4. **For \( x = 4 \)**: \[ 2^4 + 4 - 1 - \frac{1}{5^4} = 16 + 4 - 1 - \frac{1}{625} = 19 - \frac{1}{625} = \frac{11875}{625} - \frac{1}{625} = \frac{11874}{625} \neq 0 \] ### Conclusion After testing all integer values, we find that: - The only solution that satisfies the equation is \( x = 1 \). Thus, the answer is: \[ \boxed{1} \]

To solve the equation \( \log_{10}\left(\frac{1}{2^x + x - 1}\right) = x(\log_{10} 5 - 1) \), we will follow these steps: ### Step 1: Rewrite the logarithmic equation We start with the equation: \[ \log_{10}\left(\frac{1}{2^x + x - 1}\right) = x(\log_{10} 5 - 1) \] ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Multiple Correct Answers Type|18 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercise 1.6|6 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

If (1)/("log"_(x)10) = (2)/("log"_(a)10)-2 , then x =

((log)_(10)(x-3))/((log)_(10)(x^2-21))=1/2 then find x.

(log)_(x-1)x (log)_(x-2)(x-1) .....(log)_(x-12)(x-11)=2,x is equal to: 9 (b) 16 (c) 25 (d) none of these

If S={x in N :2+(log)_2sqrt(x+1)>1-(log)_(1/2)sqrt(4-x^2)} , then (a)S={1} (b) S=Z (c) S=N (d) none of these

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If (log)_3{5+4(log)_3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (log)_2 16

If y=tan^(-1){((log)_e(e//x^2))/((log)_e(e x^2))}+tan^(-1)((3+2\ (log)_e x)/(1-6\ (log)_e x)) , then (d^2y)/(dx^2)= (a) 2 (b) 1 (c) 0 (d) -1

if x+log_10 (1+2^x)=xlog_10 5+log_10 6 then x

Given system of simultaneous equations 2^x\ . 5^y=1\ a n d\ 5^(x+1). 2^y=2. Then - (a) . x=(log)_(10)5\ a n d\ y=(log)_(10)2 (b) . x=(log)_(10)2\ a n d\ y=(log)_(10)5 (c) . x=(log)_(10)(1/5)\ a n d\ y=(log)_(10)2 (d) . x=(log)_(10)5\ a n d\ y=(log)_(10)(1/2)

If 5^(3x^(2)"log"_(10)2) = 2^((x + (1)/(2))"log"_(10) 25) , then x equals to

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Exercises (Single Correct Answer Type)
  1. Solve (x+1)^(log(10) (x+1))=100(x+1)

    Text Solution

    |

  2. If log2x+logx2=10/3=log2y+logy2 and x!=y ,then x+y=

    Text Solution

    |

  3. If (log)(10)[1/(2^x+x-1)]=x[(log)(10)5-1] , then x= 4 (b) 3 (c) 2 ...

    Text Solution

    |

  4. If (log)3{5+4(log)3(x-1)}=2, then x is equal to 4 (b) 3 (c) 8 (d) (...

    Text Solution

    |

  5. If 2x^(log(4)3)+3^(log(4)x)= 27, then x is equal to

    Text Solution

    |

  6. The equation log4(2-x)+log(0.25)(2+x)=log4(1-x)+log(0.25)(2x+1) has

    Text Solution

    |

  7. The values of b for which the equation 2log(1/25)(bx+28)=1log5(12-4x-x...

    Text Solution

    |

  8. If the equation 2^x(1-2^x)+4^y=2^y is solved for y in terms of x where...

    Text Solution

    |

  9. The number of solution of x^(log(x)(x+3)^(2)) = 16is

    Text Solution

    |

  10. The product of roots of the equation (log(8)(8//x^(2)))/((log(8)x)^(2)...

    Text Solution

    |

  11. Let agt1 be a real number . If S is the set of real number x that are...

    Text Solution

    |

  12. the number of roots of the equation log(3sqrtx) x + log(3x) (sqrtx) =0...

    Text Solution

    |

  13. The set of all x satisfying the equation x^(log)3x^2+((log)3x)^(2-10)=...

    Text Solution

    |

  14. Number of real values of x satisfying the equation (log)2(x^2-x)(log)...

    Text Solution

    |

  15. If xy^(2) = 4 and log(3) (log(2) x) + log(1//3) (log(1//2) y)=1 , then...

    Text Solution

    |

  16. If x1a n dx2 are the roots of the equation e^2 x^(lnx)=x^3 with x1> x2...

    Text Solution

    |

  17. The number of real values of the parameter k for which (log(16)x)^2-(l...

    Text Solution

    |

  18. x^((log)5x)>5 implies x in (0,oo) (b) (0,1/5)U(5,∞) (c) (2,2.5) (d)...

    Text Solution

    |

  19. If S={x in N :2+(log)2sqrt(x+1)>1-(log)(1/2)sqrt(4-x^2)} , then (a)S...

    Text Solution

    |

  20. If S={x in R :((log)(0. 6)0. 216)(log)5(5-2x)lt=0}, then S is equal t...

    Text Solution

    |