Home
Class 12
MATHS
The value of (6 a^(log(e)b)(log(a^(2))b...

The value of ` (6 a^(log_(e)b)(log_(a^(2))b)(log_(b^(2))a))/(e^(log_(e)a*log_(e)b))` is

A

independent of a

B

independent of b

C

dependent on a

D

dependent on b

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \frac{6 a^{\log_{e} b} \cdot \log_{a^{2}} b \cdot \log_{b^{2}} a}{e^{\log_{e} a \cdot \log_{e} b}} \), we will simplify it step by step using properties of logarithms. ### Step 1: Rewrite the logarithms Using the change of base formula, we can express the logarithms in terms of natural logarithms: \[ \log_{a^2} b = \frac{\log_{e} b}{\log_{e} a^2} = \frac{\log_{e} b}{2 \log_{e} a} \] \[ \log_{b^2} a = \frac{\log_{e} a}{\log_{e} b^2} = \frac{\log_{e} a}{2 \log_{e} b} \] ### Step 2: Substitute the rewritten logarithms into the expression Now substituting these back into the original expression: \[ \frac{6 a^{\log_{e} b} \cdot \frac{\log_{e} b}{2 \log_{e} a} \cdot \frac{\log_{e} a}{2 \log_{e} b}}{e^{\log_{e} a \cdot \log_{e} b}} \] ### Step 3: Simplify the expression The logarithms in the numerator simplify: \[ \frac{6 a^{\log_{e} b} \cdot \frac{\log_{e} b}{2 \log_{e} a} \cdot \frac{\log_{e} a}{2 \log_{e} b}}{e^{\log_{e} a \cdot \log_{e} b}} = \frac{6 a^{\log_{e} b} \cdot \frac{1}{4}}{e^{\log_{e} a \cdot \log_{e} b}} = \frac{3}{2} \cdot \frac{a^{\log_{e} b}}{e^{\log_{e} a \cdot \log_{e} b}} \] ### Step 4: Simplify the denominator Using the property \( e^{\log_{e} x} = x \): \[ e^{\log_{e} a \cdot \log_{e} b} = a^{\log_{e} b} \] ### Step 5: Final simplification Now we can simplify the expression: \[ \frac{3}{2} \cdot \frac{a^{\log_{e} b}}{a^{\log_{e} b}} = \frac{3}{2} \] ### Conclusion Thus, the value of the given expression is: \[ \frac{3}{2} \]

To solve the expression \( \frac{6 a^{\log_{e} b} \cdot \log_{a^{2}} b \cdot \log_{b^{2}} a}{e^{\log_{e} a \cdot \log_{e} b}} \), we will simplify it step by step using properties of logarithms. ### Step 1: Rewrite the logarithms Using the change of base formula, we can express the logarithms in terms of natural logarithms: \[ \log_{a^2} b = \frac{\log_{e} b}{\log_{e} a^2} = \frac{\log_{e} b}{2 \log_{e} a} \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Linked Comprehension Type|6 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Matrix Match Type|3 Videos
  • LOGARITHM AND ITS PROPERTIES

    CENGAGE ENGLISH|Exercise Exercises (Single Correct Answer Type)|50 Videos
  • LOGARITHM AND ITS APPLICATIONS

    CENGAGE ENGLISH|Exercise Subjective Type|9 Videos
  • MATHMETICAL REASONING

    CENGAGE ENGLISH|Exercise Archives|10 Videos

Similar Questions

Explore conceptually related problems

The value of (6a^((log)_e b)((log)_(a^2)b)((log)_(b^2)a)/(e^((log)_e a(log)_e b))i s (a) independent of a (b) independent of b (c)independent of a and b (d) dependent on b

The value of a^((log_b(log_bx))/(log_b a)), is

If x gt 0 , y gt 0 , z gt 0 , the least value of x^(log_(e)y-log_(e)z)+y^(log_(e)z-log_(e)x)+Z^(log_(e)x-log_(e)y) is

The value of 1+(log_(e)x)+(log_(e)x)^(2)/(2!)+(log_(e)x)^(3)/(3!)+…infty

The minimum value of 'c' such that log_(b)(a^(log_(2)b))=log_(a)(b^(log_(2)b)) and log_(a) (c-(b-a)^(2))=3 , where a, b in N is :

The value of ("log"_(a)("log"_(b)a))/("log"_(b)("log"_(a)b)) , is

The value of 1-log_(e)2+(log_(e)2)^(2)/(2!)-(log_(e)2)^(3)/(3!)+.. is

Find the value of lim_(xto0^(+)) (3(log_(e)x)^(2)+5log_(e)x+6)/(1+(log_(e)x)^(2)).

The nth term of log_(e)2 is

Find the value of the following log_(e)(e^3)

CENGAGE ENGLISH-LOGARITHM AND ITS PROPERTIES-Multiple Correct Answers Type
  1. For a >0,!=1, the roots of the equation (log)(a x)a+(log)x a^2+(log)(a...

    Text Solution

    |

  2. 6/ The real solutions of the equation 2^(x+2).5^(6-x)=10^(x^2) is

    Text Solution

    |

  3. If (logx)/(b-c)=(logy)/(c-a)=(logz)/(a-b) , then which of the followin...

    Text Solution

    |

  4. If (log)k xdot(log)5k=(log)x5,k!=1,k >0, then x is equal to k (b) 1/5...

    Text Solution

    |

  5. If p,q in N" satisfy the equation "x^(sqrtx) = (sqrtx)^(x), then

    Text Solution

    |

  6. Which of the following, when simplified, reduces to unity? (log)(10)5...

    Text Solution

    |

  7. If (log)a x=b for permissible values of aa n dx , then identify the st...

    Text Solution

    |

  8. The number of solutions of the equation log(x+1)(x-0.5)=log(x-0.5)(x+1...

    Text Solution

    |

  9. The equation sqrt(1+log(x) sqrt27) log(3) x+1 = 0 has

    Text Solution

    |

  10. If log(1//2)(4-x)gelog(1//2)2-log(1//2)(x-1),then x belongs to

    Text Solution

    |

  11. If the equation x^(log(a)x^(2))=(x^(k-2))/a^(k),a ne 0has exactly one ...

    Text Solution

    |

  12. The set of real values of x satisfying the equation |x-1|^(log3(x^2)-...

    Text Solution

    |

  13. If x = 9 is one of the solutions of log(e)(x^(2)+15a^(2))-log(e)(a...

    Text Solution

    |

  14. In which of the following, m gt n (m,n in R)?

    Text Solution

    |

  15. if log10 5=a and log10 3=b then:

    Text Solution

    |

  16. The value of (6 a^(log(e)b)(log(a^(2))b)(log(b^(2))a))/(e^(log(e)a*lo...

    Text Solution

    |

  17. The inequality sqrt(x^((log)2sqrt(x)))geq2 is satisfied (a) by only on...

    Text Solution

    |

  18. If 3^(x) = 4^(x-1) , then x = a. (2 log(3) 2)/(2log(3) 2-1) b. 2...

    Text Solution

    |