Home
Class 12
MATHS
Find all possible values of expressions ...

Find all possible values of expressions `(2+x^2)/(4-x^2)`

Text Solution

AI Generated Solution

The correct Answer is:
To find all possible values of the expression \(\frac{2+x^2}{4-x^2}\), we will follow these steps: ### Step 1: Set up the equation Let \( y = \frac{2 + x^2}{4 - x^2} \). ### Step 2: Cross-multiply To eliminate the fraction, we cross-multiply: \[ y(4 - x^2) = 2 + x^2 \] This simplifies to: \[ 4y - yx^2 = 2 + x^2 \] ### Step 3: Rearrange the equation Rearranging gives us: \[ 4y - 2 = x^2 + yx^2 \] Factoring out \( x^2 \) from the right side: \[ 4y - 2 = x^2(1 + y) \] ### Step 4: Solve for \( x^2 \) Now, we can solve for \( x^2 \): \[ x^2 = \frac{4y - 2}{1 + y} \] ### Step 5: Determine conditions for \( x^2 \) Since \( x^2 \) cannot be negative, we require: \[ \frac{4y - 2}{1 + y} \geq 0 \] ### Step 6: Analyze the inequality This inequality holds true when both the numerator and denominator are either both positive or both negative. 1. **Numerator \( 4y - 2 \geq 0 \)**: \[ 4y \geq 2 \implies y \geq \frac{1}{2} \] 2. **Denominator \( 1 + y > 0 \)**: \[ y > -1 \] ### Step 7: Combine conditions Since \( y \) must be greater than \(-1\) and also greater than or equal to \(\frac{1}{2}\), we take the intersection: \[ y \geq \frac{1}{2} \] ### Step 8: Consider the case when \( y < -1 \) If \( y < -1 \), the sign of the denominator changes, thus: \[ 4y - 2 \leq 0 \implies y \leq \frac{1}{2} \] But since we assumed \( y < -1 \), we have: \[ y < -1 \] ### Step 9: Combine results From the two cases, we conclude: 1. For \( y \geq \frac{1}{2} \): This gives us the interval \([\frac{1}{2}, \infty)\). 2. For \( y < -1 \): This gives us the interval \((-\infty, -1)\). ### Final Result Thus, the possible values of the expression \(\frac{2+x^2}{4-x^2}\) are: \[ (-\infty, -1) \cup \left[\frac{1}{2}, \infty\right) \] ---

To find all possible values of the expression \(\frac{2+x^2}{4-x^2}\), we will follow these steps: ### Step 1: Set up the equation Let \( y = \frac{2 + x^2}{4 - x^2} \). ### Step 2: Cross-multiply To eliminate the fraction, we cross-multiply: \[ ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.3|13 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.1|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find all the possible values of expression : ( |x|)/(x) + (|y|)/y

Find all the possible values of the expression: 1/(x^2+2)

Find all possible values of expression sqrt(1-sqrt(x^(2)-6x+9)).

Find all the possible values of the expression sqrt(x^2-4) .

Find all possible values of the following expressions : (i) sqrt(x^(2)-4) (ii) sqrt(9-x^(2)) (iii) sqrt(x^(2)-2x+10)

Find all possible values of sqrt(|x|-2) .

Find all the possible values of f(x) =(1-x^2)/(x^2+3)

Find all the possible values of f(x) =(1-x^2)/(x^2+3)

Find all possible values of (x^2+1)/(x^2-2) .

Find all possible values of (x^2+1)/(x^2-2) .