Home
Class 12
MATHS
Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)...

Solve `((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0 `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(2x + 3)(4 - 3x)^3(x - 4)}{(x - 2)^2 x^5} \leq 0, \] we will follow these steps: ### Step 1: Identify the critical points We need to find the values of \(x\) that make the numerator and denominator equal to zero. **Numerator:** 1. \(2x + 3 = 0 \Rightarrow x = -\frac{3}{2}\) 2. \(4 - 3x = 0 \Rightarrow x = \frac{4}{3}\) (this term is cubed, so it will affect the sign of the function) 3. \(x - 4 = 0 \Rightarrow x = 4\) **Denominator:** 1. \((x - 2)^2 = 0 \Rightarrow x = 2\) (this term is squared, so it will not change the sign) 2. \(x^5 = 0 \Rightarrow x = 0\) **Critical Points:** The critical points are \(x = -\frac{3}{2}, 0, \frac{4}{3}, 2, 4\). ### Step 2: Create a number line Place the critical points on a number line: \[ -\frac{3}{2}, 0, \frac{4}{3}, 2, 4 \] ### Step 3: Test intervals We will test the sign of the expression in the intervals defined by these critical points: 1. **Interval \((- \infty, -\frac{3}{2})\)**: Choose \(x = -2\) \[ \frac{(2(-2) + 3)(4 - 3(-2))^3(-2 - 4)}{((-2 - 2)^2)(-2)^5} = \frac{(-4 + 3)(4 + 6)^3(-6)}{(4)(-32)} = \frac{(-1)(10^3)(-6)}{(-128)} > 0 \] 2. **Interval \((- \frac{3}{2}, 0)\)**: Choose \(x = -1\) \[ \frac{(2(-1) + 3)(4 - 3(-1))^3(-1 - 4)}{((-1 - 2)^2)(-1)^5} = \frac{(1)(7^3)(-5)}{(9)(-1)} < 0 \] 3. **Interval \((0, \frac{4}{3})\)**: Choose \(x = 1\) \[ \frac{(2(1) + 3)(4 - 3(1))^3(1 - 4)}{((1 - 2)^2)(1)^5} = \frac{(5)(1^3)(-3)}{(1)(1)} < 0 \] 4. **Interval \((\frac{4}{3}, 2)\)**: Choose \(x = 1.5\) \[ \frac{(2(1.5) + 3)(4 - 3(1.5))^3(1.5 - 4)}{((1.5 - 2)^2)(1.5)^5} = \frac{(6)(-0.5^3)(-2.5)}{(0.25)(7.59375)} > 0 \] 5. **Interval \((2, 4)\)**: Choose \(x = 3\) \[ \frac{(2(3) + 3)(4 - 3(3))^3(3 - 4)}{((3 - 2)^2)(3)^5} = \frac{(9)(-5^3)(-1)}{(1)(243)} < 0 \] 6. **Interval \((4, \infty)\)**: Choose \(x = 5\) \[ \frac{(2(5) + 3)(4 - 3(5))^3(5 - 4)}{((5 - 2)^2)(5)^5} = \frac{(13)(-11^3)(1)}{(9)(3125)} < 0 \] ### Step 4: Determine the sign of the expression From the tests, we have: - Positive in \((- \infty, -\frac{3}{2})\) - Negative in \((- \frac{3}{2}, 0)\) - Negative in \((0, \frac{4}{3})\) - Positive in \((\frac{4}{3}, 2)\) - Negative in \((2, 4)\) - Negative in \((4, \infty)\) ### Step 5: Write the solution We need the intervals where the expression is less than or equal to zero, including the points where the numerator is zero but excluding the points where the denominator is zero: \[ x \in \left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, 0\right) \cup (0, \frac{4}{3}] \cup (2, 4) \] ### Final Answer The solution to the inequality is: \[ x \in \left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, 0\right) \cup \left(0, \frac{4}{3}\right] \cup (2, 4) \]

To solve the inequality \[ \frac{(2x + 3)(4 - 3x)^3(x - 4)}{(x - 2)^2 x^5} \leq 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.2|8 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0

Solve: ((5x-3))/6-((2x-1))/3=((4-3x))/2

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve (x(3-4x)(x+1))/(2x-5)lt 0

Solve x^(4)-3x^(2)+2=0 .

" Solve : (3x)/(4)-(2x+5)/(3)=(5)/(2)

The number of integral solution of (x^(2)(3x-4)^(3)(x-2)^(4))/(In(2x-1)(x-5)^(5)(2x-7)^(6))le 0 is :

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.

Solve x(x+2)^2(x-1)^5(2x-3)(x-3)^4geq0.