Home
Class 12
MATHS
Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0...

Solve `((x-3)(x+5)(x-7))/(|x-4|(x+6))le0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(x-3)(x+5)(x-7)}{|x-4|(x+6)} \leq 0, \] we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator is zero or the denominator is undefined. - **Numerator**: Set \((x-3)(x+5)(x-7) = 0\). - \(x - 3 = 0 \Rightarrow x = 3\) - \(x + 5 = 0 \Rightarrow x = -5\) - \(x - 7 = 0 \Rightarrow x = 7\) - **Denominator**: Set \(|x-4|(x+6) = 0\). - \(|x-4| = 0 \Rightarrow x = 4\) (undefined at this point) - \(x + 6 = 0 \Rightarrow x = -6\) (undefined at this point) So, the critical points are: \(x = -6, -5, 3, 4, 7\). ### Step 2: Create a number line Plot the critical points on a number line: \[ -\infty \quad -6 \quad -5 \quad 3 \quad 4 \quad 7 \quad +\infty \] ### Step 3: Test intervals We will test the sign of the expression in each interval determined by the critical points: 1. **Interval \((- \infty, -6)\)**: Choose \(x = -7\) \[ \frac{(-7-3)(-7+5)(-7-7)}{|(-7-4)|(-7+6)} = \frac{(-10)(-2)(-14)}{11(-1)} < 0 \] 2. **Interval \((-6, -5)\)**: Choose \(x = -5.5\) \[ \frac{(-5.5-3)(-5.5+5)(-5.5-7)}{|(-5.5-4)|(-5.5+6)} = \frac{(-8.5)(-0.5)(-12.5)}{9.5(0.5)} < 0 \] 3. **Interval \((-5, 3)\)**: Choose \(x = 0\) \[ \frac{(0-3)(0+5)(0-7)}{|(0-4)|(0+6)} = \frac{(-3)(5)(-7)}{4(6)} > 0 \] 4. **Interval \((3, 4)\)**: Choose \(x = 3.5\) \[ \frac{(3.5-3)(3.5+5)(3.5-7)}{|(3.5-4)|(3.5+6)} = \frac{(0.5)(8.5)(-3.5)}{0.5(9.5)} < 0 \] 5. **Interval \((4, 7)\)**: Choose \(x = 5\) \[ \frac{(5-3)(5+5)(5-7)}{|(5-4)|(5+6)} = \frac{(2)(10)(-2)}{1(11)} < 0 \] 6. **Interval \((7, +\infty)\)**: Choose \(x = 8\) \[ \frac{(8-3)(8+5)(8-7)}{|(8-4)|(8+6)} = \frac{(5)(13)(1)}{4(14)} > 0 \] ### Step 4: Compile results From the tests, we find: - Negative in intervals: \((- \infty, -6)\), \((-6, -5)\), \((3, 4)\), and \((4, 7)\). - The expression is zero at \(x = -5, 3, 7\). ### Step 5: Write the solution The solution to the inequality \(\frac{(x-3)(x+5)(x-7)}{|x-4|(x+6)} \leq 0\) is: \[ x \in (-\infty, -6) \cup (-6, -5] \cup [3, 4) \cup (4, 7]. \]

To solve the inequality \[ \frac{(x-3)(x+5)(x-7)}{|x-4|(x+6)} \leq 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.2|8 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Solve : (5)/(x)=(7)/(x-4)

Solve: (3x+5)/(2x+7)=4

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Solve ((2x+3)(4-3x)^3(x-4))/((x-2)^2x^5)le0

Let 'a' be an integer. If there are 10 inegers satisfying the ((x-a)^(2)(x-2a))/((x-3a)(x-4a))le0 then

Solve ((x-5)^(2)(x+2)^(3)(x-4))/((x-3)^(4))le0

Solve for x: (x-4)/(x-5)+(x-6)/(x-7)=10/3; x!=5,7

Solve 4x+3<6x+7 .

Solve 4x+3<6x+7 .

Solve: ((4+x)(5-x))/((2+x)(7-x))=1