Home
Class 12
MATHS
Solve (6x^2-5x-3)/(x^2-2x+6)le 4...

Solve `(6x^2-5x-3)/(x^2-2x+6)le 4`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \leq 4\), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \leq 4 \] Subtract 4 from both sides: \[ \frac{6x^2 - 5x - 3}{x^2 - 2x + 6} - 4 \leq 0 \] ### Step 2: Combine the Terms To combine the terms, we need a common denominator: \[ \frac{6x^2 - 5x - 3 - 4(x^2 - 2x + 6)}{x^2 - 2x + 6} \leq 0 \] Distributing the -4: \[ \frac{6x^2 - 5x - 3 - 4x^2 + 8x - 24}{x^2 - 2x + 6} \leq 0 \] ### Step 3: Simplify the Numerator Combine like terms in the numerator: \[ \frac{(6x^2 - 4x^2) + (-5x + 8x) + (-3 - 24)}{x^2 - 2x + 6} \leq 0 \] This simplifies to: \[ \frac{2x^2 + 3x - 27}{x^2 - 2x + 6} \leq 0 \] ### Step 4: Factor the Numerator Next, we will factor the numerator \(2x^2 + 3x - 27\). We can use the quadratic formula, \(x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}\): - Here, \(a = 2\), \(b = 3\), and \(c = -27\). \[ x = \frac{-3 \pm \sqrt{3^2 - 4 \cdot 2 \cdot (-27)}}{2 \cdot 2} \] \[ x = \frac{-3 \pm \sqrt{9 + 216}}{4} \] \[ x = \frac{-3 \pm \sqrt{225}}{4} \] \[ x = \frac{-3 \pm 15}{4} \] Calculating the two roots: \[ x_1 = \frac{12}{4} = 3, \quad x_2 = \frac{-18}{4} = -\frac{9}{2} \] ### Step 5: Analyze the Denominator Now, we analyze the denominator \(x^2 - 2x + 6\). The discriminant is: \[ (-2)^2 - 4 \cdot 1 \cdot 6 = 4 - 24 = -20 \] Since the discriminant is negative, the denominator is always positive. ### Step 6: Set Up the Sign Chart Now we can set up a sign chart for the numerator \(2x^2 + 3x - 27\): - The roots are \(x = -\frac{9}{2}\) and \(x = 3\). - Test intervals: \((- \infty, -\frac{9}{2})\), \((- \frac{9}{2}, 3)\), and \((3, \infty)\). 1. For \(x < -\frac{9}{2}\), choose \(x = -5\): \[ 2(-5)^2 + 3(-5) - 27 = 50 - 15 - 27 = 8 \quad (\text{positive}) \] 2. For \(-\frac{9}{2} < x < 3\), choose \(x = 0\): \[ 2(0)^2 + 3(0) - 27 = -27 \quad (\text{negative}) \] 3. For \(x > 3\), choose \(x = 4\): \[ 2(4)^2 + 3(4) - 27 = 32 + 12 - 27 = 17 \quad (\text{positive}) \] ### Step 7: Determine the Solution Set The function \(\frac{2x^2 + 3x - 27}{x^2 - 2x + 6} \leq 0\) is satisfied in the interval: \[ -\frac{9}{2} \leq x \leq 3 \] ### Final Answer Thus, the solution to the inequality is: \[ x \in \left[-\frac{9}{2}, 3\right] \]

To solve the inequality \(\frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \leq 4\), we will follow these steps: ### Step 1: Rewrite the Inequality We start with the given inequality: \[ \frac{6x^2 - 5x - 3}{x^2 - 2x + 6} \leq 4 \] Subtract 4 from both sides: ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.2|8 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

if (6x^2-5x-3)/(x^2-2x+6)<=4 , then the least and the highest values of 4x^2 are : (a) 0 and 81 (b) 9 and 81 (c) 36 and 81 (d) None of these

Solve x^(2)+5x-(a^(2)+a-6)=0 .

Solve: (6x^2+\ 13 x-4)/(2x+5)=(12 x^2+5x-2)/(4x+3)

Solve sqrt(x^2+4x-21)+sqrt(x^2-x-6)=sqrt(6x^2-5x-39.)

Solve: (1-x^2)/(5x-6-x^2)<0

Solve (2x-3)/(x-1)+1=(6x-x^2-6)/(x-1)dot

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve sqrt(5x^2-6x+8)-sqrt(5x^2-6x-7)=1.

Solve ((x-3)(x+5)(x-7))/(|x-4|(x+6))le0

Resolve (x^(3)-6x^(2)+10x-2)/(x^(2)-5x+6) into partial fractions: