Home
Class 12
MATHS
Find all the possible values of f(x) =(1...

Find all the possible values of `f(x) =(1-x^2)/(x^2+3)`

Text Solution

AI Generated Solution

The correct Answer is:
To find all the possible values of the function \( f(x) = \frac{1 - x^2}{x^2 + 3} \), we can follow these steps: ### Step 1: Set the function equal to a variable Let \( f(x) = y \). Therefore, we have: \[ y = \frac{1 - x^2}{x^2 + 3} \] ### Step 2: Rearrange the equation Multiply both sides by \( x^2 + 3 \) to eliminate the denominator: \[ y(x^2 + 3) = 1 - x^2 \] This simplifies to: \[ yx^2 + 3y = 1 - x^2 \] ### Step 3: Combine like terms Rearranging gives: \[ yx^2 + x^2 = 1 - 3y \] Factoring out \( x^2 \): \[ x^2(y + 1) = 1 - 3y \] Thus, we can express \( x^2 \) as: \[ x^2 = \frac{1 - 3y}{y + 1} \] ### Step 4: Determine conditions for \( x^2 \) Since \( x^2 \) must be non-negative (as it is a square), we require: \[ \frac{1 - 3y}{y + 1} \geq 0 \] ### Step 5: Analyze the inequality The fraction \( \frac{1 - 3y}{y + 1} \) is non-negative when both the numerator and denominator are either both positive or both negative. 1. **Numerator**: \( 1 - 3y \geq 0 \) implies \( y \leq \frac{1}{3} \) 2. **Denominator**: \( y + 1 > 0 \) implies \( y > -1 \) ### Step 6: Find critical points The critical points from the inequalities are: - From \( 1 - 3y = 0 \), we get \( y = \frac{1}{3} \) - From \( y + 1 = 0 \), we get \( y = -1 \) ### Step 7: Test intervals We will test the intervals determined by the critical points \( y = -1 \) and \( y = \frac{1}{3} \): - For \( y < -1 \): Choose \( y = -2 \) \[ \frac{1 - 3(-2)}{-2 + 1} = \frac{1 + 6}{-1} = -7 \quad (\text{negative}) \] - For \( -1 < y < \frac{1}{3} \): Choose \( y = 0 \) \[ \frac{1 - 3(0)}{0 + 1} = \frac{1}{1} = 1 \quad (\text{positive}) \] - For \( y > \frac{1}{3} \): Choose \( y = 1 \) \[ \frac{1 - 3(1)}{1 + 1} = \frac{1 - 3}{2} = \frac{-2}{2} = -1 \quad (\text{negative}) \] ### Step 8: Conclusion The function \( f(x) \) is non-negative in the interval \( (-1, \frac{1}{3}] \). However, since \( y = -1 \) makes the denominator zero, it is excluded from the solution set. Thus, the possible values of \( f(x) \) are: \[ y \in (-1, \frac{1}{3}] \]

To find all the possible values of the function \( f(x) = \frac{1 - x^2}{x^2 + 3} \), we can follow these steps: ### Step 1: Set the function equal to a variable Let \( f(x) = y \). Therefore, we have: \[ y = \frac{1 - x^2}{x^2 + 3} \] ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.4|11 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.2|8 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Find all possible values of (x^2+1)/(x^2-2) .

Find all possible values of (x^2+1)/(x^2-2) .

Find all the possible values of 1/x for x>3 .

Find all possible values of sqrt(|x|-2) .

Find all possible values of expressions (2+x^2)/(4-x^2)

Find all possible values of expressions (2+x^2)/(4-x^2)

Find all the possible values of the expression: 1/(x^2+2)

Give the answers of the following questions : (i) If f(x) = [x] + 2, then find the possible value (s) of f(x) + f(-x). (ii) If 4[x] = [x + 3], then find x.

Find all the possible values of the expression sqrt(x^2-4) .

Find the possible values of a such that f(x)=e^(2x)-(a+1)e^x+2x is monotonically increasing for x in Rdot