Home
Class 12
MATHS
The complete solution set of inequality ...

The complete solution set of inequality `((x-5)^(1005)(x+8)^(1008)(x-1))/(x^(1006)(x-2)^3(x-3)^5(x-6)(x+9)^(1010)) le 0 `

A

`(-oo,-9)cup(-8,0) cup (0,1)cup (2,3)cup [ 5,6]`

B

`(-oo,-9)cup(-9,0)cup(0,1) cup (2,3)cup [5,6)`

C

`(-oo,-9)cup (-9,0)cup (0,1] cup (2,3)cup [ 5,6)`

D

`(-oo,0) cup (0,1] cup (2,3)cup [5,6)]`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \[ \frac{(x-5)^{1005}(x+8)^{1008}(x-1)}{x^{1006}(x-2)^3(x-3)^5(x-6)(x+9)^{1010}} \leq 0, \] we will follow these steps: ### Step 1: Identify the critical points The critical points occur when the numerator or denominator is zero. Set each factor to zero: - From the numerator: - \(x - 5 = 0 \Rightarrow x = 5\) - \(x + 8 = 0 \Rightarrow x = -8\) - \(x - 1 = 0 \Rightarrow x = 1\) - From the denominator: - \(x = 0\) (from \(x^{1006}\)) - \(x - 2 = 0 \Rightarrow x = 2\) (from \((x-2)^3\)) - \(x - 3 = 0 \Rightarrow x = 3\) (from \((x-3)^5\)) - \(x - 6 = 0 \Rightarrow x = 6\) - \(x + 9 = 0 \Rightarrow x = -9\) (from \((x+9)^{1010}\)) Thus, the critical points are: \[ -9, -8, 0, 1, 2, 3, 5, 6. \] ### Step 2: Create a number line We will place the critical points on a number line: ``` ---|---|---|---|---|---|---|---|---|---|--- -9 -8 0 1 2 3 5 6 ``` ### Step 3: Test intervals We will test the sign of the expression in each interval created by these critical points: 1. **Interval \((-∞, -9)\)**: Choose \(x = -10\) \[ \text{Sign} = \frac{(-)(+)(-)}{(-)(-)(-)(-)(+)} = + \quad \text{(positive)} \] 2. **Interval \((-9, -8)\)**: Choose \(x = -9.5\) \[ \text{Sign} = \frac{(-)(+)(-)}{(-)(-)(-)(-)(+)} = + \quad \text{(positive)} \] 3. **Interval \((-8, 0)\)**: Choose \(x = -1\) \[ \text{Sign} = \frac{(-)(+)(-)}{(+)(-)(-)(-)(+)} = - \quad \text{(negative)} \] 4. **Interval \((0, 1)\)**: Choose \(x = 0.5\) \[ \text{Sign} = \frac{(-)(+)(-)}{(+)(-)(-)(-)(+)} = - \quad \text{(negative)} \] 5. **Interval \((1, 2)\)**: Choose \(x = 1.5\) \[ \text{Sign} = \frac{(-)(+)(+)}{(+)(-)(-)(-)(+)} = + \quad \text{(positive)} \] 6. **Interval \((2, 3)\)**: Choose \(x = 2.5\) \[ \text{Sign} = \frac{(-)(+)(+)}{(+)(+)(-)(-)(+)} = - \quad \text{(negative)} \] 7. **Interval \((3, 5)\)**: Choose \(x = 4\) \[ \text{Sign} = \frac{(-)(+)(+)}{(+)(+)(+)(-)(+)} = + \quad \text{(positive)} \] 8. **Interval \((5, 6)\)**: Choose \(x = 5.5\) \[ \text{Sign} = \frac{(+)(+)(+)}{(+)(+)(+)(-)(+)} = - \quad \text{(negative)} \] 9. **Interval \((6, ∞)\)**: Choose \(x = 7\) \[ \text{Sign} = \frac{(+)(+)(+)}{(+)(+)(+)(+)(+)} = + \quad \text{(positive)} \] ### Step 4: Determine where the expression is less than or equal to zero From our tests, the expression is negative in the intervals: - \((-8, 0)\) - \((0, 1)\) - \((2, 3)\) - \((5, 6)\) ### Step 5: Include critical points The critical points where the expression equals zero are \(x = -8\), \(x = 1\), and \(x = 5\). However, \(x = 0\) is not included since it makes the denominator zero. ### Final solution The complete solution set is: \[ (-8, 0) \cup [1, 2) \cup [5, 6). \]

To solve the inequality \[ \frac{(x-5)^{1005}(x+8)^{1008}(x-1)}{x^{1006}(x-2)^3(x-3)^5(x-6)(x+9)^{1010}} \leq 0, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

((x-4)^(2005)dot(x+8)^(2008)(x+1))/(x^(2006)(x-2)^3dot(x+3)^5 0(x-6)(x+9)^(2010))lt=0

Complete solution set of inequlaity ((x+2)(x+3))/((x-2)(x-3))le1

The solution set of the inequality (x+3)^(5) -(x -1)^(5) ge 244 is

Complete solution set of the inequality |x^(2)-x-2|+|x+1|le0 is

The solution set of inequality ((e^(x)-1)(2x-3)(x^(2)+x+2))/((sinx-2)(x+1)x) le 0

The solution set of the inequality (3^x-4^x)/(x^2-3x-4)geq0 is

The solution set of the inequality (tan^(-1)x)^(2) le (tan^(-1)x) +6 is

The solution set of the inequality log_(5/8)(2x^(2)-x-3/8) ge1 is-

The solution of the inequality ((x+7)/(x-5)+(3x+1)/(2) ge 0 is

The solution set of the inequation (x+4)/(x-3) le2 , is

CENGAGE ENGLISH-SET THEORY AND REAL NUMBER SYSTEM -EXERCISES
  1. Which is the simplified representation of (A' cap B' cap C) cup (B cap...

    Text Solution

    |

  2. In a statistical investigation of 1,003 families of Calcutta, it was f...

    Text Solution

    |

  3. A survey shows that 63 % of the pepole watch a news channel whereas , ...

    Text Solution

    |

  4. In a town of 10000 families, it was found that 40% families buy ne...

    Text Solution

    |

  5. Complete solution set of inequlaity ((x+2)(x+3))/((x-2)(x-3))le1

    Text Solution

    |

  6. The number of intergal values of x if 5x -1 lt (x+1)^2 lt 7 x-3 is

    Text Solution

    |

  7. If set A ={x|(x^2(x-5)(2x-1))/((5x+1)(x+2)) lt 0 } and Set B={x|(3x...

    Text Solution

    |

  8. Number of intergers satisfying the inequality x^4- 29x^2+100 le 0 i...

    Text Solution

    |

  9. If n gt 0 and exactly 15 integers satisfying (x+6)(x-4 ) (x-5) (2x-...

    Text Solution

    |

  10. The solution of the inequality ((x+7)/(x-5)+(3x+1)/(2) ge 0 is

    Text Solution

    |

  11. The complete solution set of inequality ((x-5)^(1005)(x+8)^(1008)(x-1)...

    Text Solution

    |

  12. Sum of solution of the equation |x|^3-4|x|^2+3|x|=0 is

    Text Solution

    |

  13. Number of intergral roots of |x-1||x^2-2|=2 is

    Text Solution

    |

  14. The solution set of the inequlity (|x-2|-x)/(x)lt2 is

    Text Solution

    |

  15. Number of solutions of the equation |2-|x||=x +4 is a.0 b.1 c.2 d.Inf...

    Text Solution

    |

  16. Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|...

    Text Solution

    |

  17. If -4lex lt 2 then ||x+2|-3 lies in the inerval

    Text Solution

    |

  18. Complete set of values of x satisfying inequality ||x-1|-5| lt 2x -5 ...

    Text Solution

    |

  19. If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

    Text Solution

    |

  20. The complete solution set of the equation |x^2-5x+6|+|x^2+12x+27|=|17x...

    Text Solution

    |