Home
Class 12
MATHS
Number of intergal values of x satisfyin...

Number of intergal values of x satisfying the inequality `(x^2+6x-7)/(|x+2||x+3|) lt 0 `is

A

5

B

6

C

7

D

8

Text Solution

AI Generated Solution

The correct Answer is:
To solve the inequality \(\frac{x^2 + 6x - 7}{|x + 2||x + 3|} < 0\), we will follow these steps: ### Step 1: Identify the points where the expression is undefined The expression is undefined when the denominator is zero. Thus, we need to find when \(|x + 2| = 0\) and \(|x + 3| = 0\). - \(|x + 2| = 0 \Rightarrow x + 2 = 0 \Rightarrow x = -2\) - \(|x + 3| = 0 \Rightarrow x + 3 = 0 \Rightarrow x = -3\) The expression is undefined at \(x = -2\) and \(x = -3\). ### Step 2: Analyze the numerator Next, we analyze the numerator \(x^2 + 6x - 7\). We will find the roots of the quadratic equation by factoring or using the quadratic formula. The quadratic can be factored as follows: \[ x^2 + 6x - 7 = (x + 7)(x - 1) \] Thus, the roots are \(x = -7\) and \(x = 1\). ### Step 3: Determine the intervals The critical points from the numerator and the points where the expression is undefined give us the intervals to test: - \(x = -7\) - \(x = -3\) - \(x = -2\) - \(x = 1\) This divides the real line into the following intervals: 1. \((- \infty, -7)\) 2. \((-7, -3)\) 3. \((-3, -2)\) 4. \((-2, 1)\) 5. \((1, \infty)\) ### Step 4: Test each interval We will test a point from each interval to determine if the inequality holds. 1. **Interval \((- \infty, -7)\)**: Choose \(x = -8\) \[ \frac{(-8)^2 + 6(-8) - 7}{|(-8) + 2||(-8) + 3|} = \frac{64 - 48 - 7}{6 \cdot 5} = \frac{9}{30} > 0 \] 2. **Interval \((-7, -3)\)**: Choose \(x = -5\) \[ \frac{(-5)^2 + 6(-5) - 7}{|(-5) + 2||(-5) + 3|} = \frac{25 - 30 - 7}{3 \cdot 2} = \frac{-12}{6} < 0 \] 3. **Interval \((-3, -2)\)**: Choose \(x = -2.5\) \[ \frac{(-2.5)^2 + 6(-2.5) - 7}{|(-2.5) + 2||(-2.5) + 3|} = \frac{6.25 - 15 - 7}{0.5 \cdot 0.5} = \frac{-15.75}{0.25} < 0 \] 4. **Interval \((-2, 1)\)**: Choose \(x = 0\) \[ \frac{0^2 + 6(0) - 7}{|0 + 2||0 + 3|} = \frac{-7}{2 \cdot 3} = \frac{-7}{6} < 0 \] 5. **Interval \((1, \infty)\)**: Choose \(x = 2\) \[ \frac{(2)^2 + 6(2) - 7}{|2 + 2||2 + 3|} = \frac{4 + 12 - 7}{4 \cdot 5} = \frac{9}{20} > 0 \] ### Step 5: Combine results From our tests, the inequality \(\frac{x^2 + 6x - 7}{|x + 2||x + 3|} < 0\) holds in the intervals: - \((-7, -3)\) - \((-3, -2)\) - \((-2, 1)\) ### Step 6: Identify integral values Now we find the integral values in these intervals: - In \((-7, -3)\): \(-6, -5, -4\) (3 values) - In \((-3, -2)\): No integral values - In \((-2, 1)\): \(-1, 0\) (2 values) ### Conclusion The total number of integral values satisfying the inequality is: \[ 3 + 0 + 2 = 5 \] Thus, the answer is **5**. ---

To solve the inequality \(\frac{x^2 + 6x - 7}{|x + 2||x + 3|} < 0\), we will follow these steps: ### Step 1: Identify the points where the expression is undefined The expression is undefined when the denominator is zero. Thus, we need to find when \(|x + 2| = 0\) and \(|x + 3| = 0\). - \(|x + 2| = 0 \Rightarrow x + 2 = 0 \Rightarrow x = -2\) - \(|x + 3| = 0 \Rightarrow x + 3 = 0 \Rightarrow x = -3\) ...
Promotional Banner

Topper's Solved these Questions

  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Archives|1 Videos
  • SET THEORY AND REAL NUMBER SYSTEM

    CENGAGE ENGLISH|Exercise Concept Application Exercise 1.5|12 Videos
  • SCALER TRIPLE PRODUCTS

    CENGAGE ENGLISH|Exercise DPP 2.3|11 Videos
  • SOLUTIONS AND PROPERTIES OF TRIANGLE

    CENGAGE ENGLISH|Exercise Comprehension Type|6 Videos

Similar Questions

Explore conceptually related problems

Number of intergral value of x satisfying the inequality (x^(2) + 6x - 7)/(|x + 4|) lt 0 is :

The number of integral values of x satisfying the inequality (3/4)^(6x+10-x^2)<(27)/(64) is _____

The number of negative integral values of x satisfying the inequality log_((x+(5)/(2)))((x-5)/(2x-3))^(2)lt 0 is :

The set of real values of x satisfying the inequality |x^(2) + x -6| lt 6 , is

The set of real values of x satisfying the inequality log_(x+1/x)(log_2((x-1)/(x+2))) gt 0, is equal to

Number of intergers satisfying the inequality x^4- 29x^2+100 le 0 is

The number of integers satisfying the inequality is x/(x+6)<=1/x

The set of all values of x satisfying the inequations (x-1)^(3) (x+1) lt 0 is

If number of integral values of x satisfying the inequality ((x)/(100))^(7logx-log^(2)x-6)ge10^(12) are alpha then

The set of values of x in R satisfying the inequality x^(2)-4x-21 le 0 is

CENGAGE ENGLISH-SET THEORY AND REAL NUMBER SYSTEM -EXERCISES
  1. Which is the simplified representation of (A' cap B' cap C) cup (B cap...

    Text Solution

    |

  2. In a statistical investigation of 1,003 families of Calcutta, it was f...

    Text Solution

    |

  3. A survey shows that 63 % of the pepole watch a news channel whereas , ...

    Text Solution

    |

  4. In a town of 10000 families, it was found that 40% families buy ne...

    Text Solution

    |

  5. Complete solution set of inequlaity ((x+2)(x+3))/((x-2)(x-3))le1

    Text Solution

    |

  6. The number of intergal values of x if 5x -1 lt (x+1)^2 lt 7 x-3 is

    Text Solution

    |

  7. If set A ={x|(x^2(x-5)(2x-1))/((5x+1)(x+2)) lt 0 } and Set B={x|(3x...

    Text Solution

    |

  8. Number of intergers satisfying the inequality x^4- 29x^2+100 le 0 i...

    Text Solution

    |

  9. If n gt 0 and exactly 15 integers satisfying (x+6)(x-4 ) (x-5) (2x-...

    Text Solution

    |

  10. The solution of the inequality ((x+7)/(x-5)+(3x+1)/(2) ge 0 is

    Text Solution

    |

  11. The complete solution set of inequality ((x-5)^(1005)(x+8)^(1008)(x-1)...

    Text Solution

    |

  12. Sum of solution of the equation |x|^3-4|x|^2+3|x|=0 is

    Text Solution

    |

  13. Number of intergral roots of |x-1||x^2-2|=2 is

    Text Solution

    |

  14. The solution set of the inequlity (|x-2|-x)/(x)lt2 is

    Text Solution

    |

  15. Number of solutions of the equation |2-|x||=x +4 is a.0 b.1 c.2 d.Inf...

    Text Solution

    |

  16. Number of intergal values of x satisfying the inequality (x^2+6x-7)/(|...

    Text Solution

    |

  17. If -4lex lt 2 then ||x+2|-3 lies in the inerval

    Text Solution

    |

  18. Complete set of values of x satisfying inequality ||x-1|-5| lt 2x -5 ...

    Text Solution

    |

  19. If |x^2-2x+2|-|2x^2-5x+2|=|x^2-3x| then the set of values of x is

    Text Solution

    |

  20. The complete solution set of the equation |x^2-5x+6|+|x^2+12x+27|=|17x...

    Text Solution

    |